Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
उत्तर
\[\text{ Let y } = x^{\sin x } + \left( \sin x \right)^x \]
\[\text{ Also, let u } = x^{\sin x } \text{ and v } = \left( \sin x \right)^x \]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u } = x^{\sin x} \]
\[\text{ Taking log on both sides}, \]
\[ \Rightarrow \log u = \log\left( x^{\sin x} \right)\]
\[ \Rightarrow \log u = \sin x \log x\]
\[\text{ Differentiating both sides with respect to x}, \]
\[\frac{1}{u}\frac{du}{dx} = \log x\frac{d}{dx}\left( \sin x \right) + \sin x\frac{d}{dx}\left( \log x \right) \]
\[ \Rightarrow \frac{du}{dx} = u\left[ \cos x \log x + \sin x\frac{1}{x} \right]\]
\[ \Rightarrow \frac{du}{dx} = x^{\sin x} \left[ \cos x \log x + \frac{\sin x}{x} \right] . . . \left( ii \right)\]
\[\text{ Again, v } = \left( \sin x \right)^x \]
\[\text{ Taking log on both sides }, \]
\[ \Rightarrow \log v = \log \left( \sin x \right)^x \]
\[ \Rightarrow \log v = x \log\left( \sin x \right)\]
\[\text{ Differentiating both sides with respect to x }, \]
\[\frac{1}{v}\frac{dv}{dx} = \log\left( \sin x \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left[ \log\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \log\left( \sin x \right) + x\frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( \sin x \right)^x \left[ \log \sin x + \frac{x}{\sin x}\cos x \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( \sin x \right)^x \left[ \log \sin x + x \cot x \right] . . \left( iii \right)\]
\[\text{ From }\left( i \right), \left( ii \right)\text{ and }\left( iii \right), \text{ we obtain }\]
\[\frac{dy}{dx} = x^{\sin x} \left( \cos x \log x + \frac{\sin x}{x} \right) + \left( \sin x \right)^x \left[ \log \sin x + x \cot x \right] \]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles x2ex ?
Differentiate the following functions from first principles log cosec x ?
Differentiate sin2 (2x + 1) ?
Differentiate \[3^{e^x}\] ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
Find the second order derivatives of the following function tan−1 x ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =