Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
उत्तर
\[\text{ We have, x } = a e^\theta \left( \sin\theta - \cos\theta \right) \text{ and } y = a e^\theta \left( \sin\theta + \cos\theta \right)\]
\[\Rightarrow \frac{dx}{d\theta} = a\left[ e^\theta \frac{d}{d\theta}\left( \sin\theta - \cos\theta \right) + \left( \sin\theta - \cos\theta \right)\frac{d}{d\theta}\left( e^\theta \right) \right] \text{ and } \frac{dy}{d\theta} = a\left[ e^\theta \frac{d}{d\theta}\left( \sin\theta + \cos\theta \right) + \left( \sin\theta + \cos\theta \right)\frac{d}{d\theta}\left( e^\theta \right) \right]\]
\[ \Rightarrow \frac{dx}{d\theta} = a\left[ e^\theta \left( \cos\theta + \sin\theta \right) + \left( \sin\theta - \cos\theta \right) e^\theta \right] \text{ and } \frac{dy}{d\theta} = a\left[ e^\theta \left( \cos\theta - \sin\theta \right) + \left( \sin\theta + \cos\theta \right) e^\theta \right]\]
\[ \Rightarrow \frac{dx}{d\theta} = a\left[ 2 e^\theta \sin\theta \right] \text{ and } \frac{dy}{d\theta} = a\left[ 2 e^\theta \cos\theta \right] \]
\[\therefore \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\left( 2 e^\theta \cos\theta \right)}{a\left( 2 e^\theta \sin\theta \right)} = \cot\theta\]
APPEARS IN
संबंधित प्रश्न
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles eax+b.
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.