हिंदी

If Y = Cos − 1 ( 2 X ) + 2 Cos − 1 √ 1 − 4 X 2 , 0 < X < 1 2 , Find D Y D X . ? - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?

योग

उत्तर

\[\text{ Here, y }= \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}\]

\[\text{ Put 2x  }= \cos\theta\]

\[ \therefore y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \sqrt{1 - \cos^2 \theta}\]

\[ \Rightarrow y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \left( \sin\theta \right)\]

\[ \Rightarrow y = \cos^{- 1} \left( \cos \theta \right) + 2 \cos^{- 1} \left[ \cos\left( \frac{\pi}{2} - \theta \right) \right] . . . \left( i \right)\]

\[\text{Here}, 0 < x < \frac{1}{2}\]

\[ \Rightarrow 0 < 2x < 1\]

\[ \Rightarrow 0 < \cos\theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]

\[\text{and}\]

\[ \Rightarrow 0 > - \theta > - \frac{\pi}{2}\]

\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - \theta \right) > 0\]

\[ \Rightarrow 0 < \left( \frac{\pi}{2} - \theta \right) < \frac{\pi}{2}\]

\[\text{ So, from equation} \left( i \right), \]

\[ y = \theta + 2\left( \frac{\pi}{2} - \theta \right) .......\left[ Since, \cos^{- 1} \left( \cos\left( \theta \right) \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right]\]

\[ \Rightarrow y = + \pi - 2\theta\]

\[ \Rightarrow y = \pi - \theta\]

\[ \Rightarrow y = \pi - \cos^{- 1} \left( 2x \right) ........\left[ \text{Since}, 2x = cos\theta \right]\]

Differentiate it with respect to x using chain rule,

\[\frac{d y}{d x} = 0 - \left[ \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right]\frac{d}{dx}\left( 2x \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{1}{\sqrt{1 - 4 x^2}}\left( 2 \right)\]

\[ \therefore \frac{d y}{d x} = \frac{2}{\sqrt{1 - 4 x^2}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.03 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.03 | Q 42 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate `2^(x^3)` ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function  log (sin x) ?


Find the second order derivatives of the following function x cos x ?


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×