Advertisements
Advertisements
प्रश्न
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
उत्तर
\[\text{ We have,} f\left( 0 \right) = f\left( 1 \right) = 0 , f'\left( 1 \right) = 2\]
\[\text { and, } \]
\[y = f\left( e^x \right) e^{f\left( x \right)}\]
\[\Rightarrow \frac{dy}{dx} = \frac{d}{dx}\left[ f\left( e^x \right) \times e^{f\left( x \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right)\frac{d}{dx} e^{f\left( x \right)} + e^{f\left( x \right)} \frac{d}{dx}f\left( e^x \right) \left[ \text{Using product rule } \right]\]
\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right) \times e^{f\left( x \right)} \frac{d}{dx}f\left( x \right) + e^{f\left( x \right)} \times f'\left( e^x \right)\frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right) \times e^{f\left( x \right)} \times f'\left( x \right) + e^{f\left( x \right)} \times f'\left( e^x \right) \times e^x \]
\[\text{ Putting x } = 0, \text{ we get }, \]
\[\frac{dy}{dx} = f\left( e^0 \right) \times e^{f\left( 0 \right)} \times f'\left( 0 \right) + e^{f\left( 0 \right)} \times f'\left( e^0 \right) \times e^0 \]
\[ \Rightarrow \frac{dy}{dx} = f\left( 1 \right) e^{f\left( 0 \right)} \times f'\left( 0 \right) + e^{f\left( 0 \right)} \times f'\left( 1 \right) \times 1\]
\[ \Rightarrow \frac{dy}{dx} = 0 \times e^0 \times f'\left( 0 \right) + e^0 \times 2 \times 1 .........\left[ \because f\left( x \right) = f\left( 1 \right) = 0 \text{ and }f'\left( 1 \right) = 2 \right]\]
\[ \Rightarrow \frac{dy}{dx} = 0 + 1 \times 2 \times 1\]
\[ \Rightarrow \frac{dy}{dx} = 2\]
APPEARS IN
संबंधित प्रश्न
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate tan 5x° ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
Differential coefficient of sec(tan−1 x) is ______.
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.