हिंदी

If F ( 0 ) = F ( 1 ) = 0 , F ′ ( 1 ) = 2 and Y = F ( E X ) E F ( X ) Write the Value of D Y D X at X = 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?

योग

उत्तर

\[\text{ We have,} f\left( 0 \right) = f\left( 1 \right) = 0 , f'\left( 1 \right) = 2\]

\[\text { and, } \]

\[y = f\left( e^x \right) e^{f\left( x \right)}\]

\[\Rightarrow \frac{dy}{dx} = \frac{d}{dx}\left[ f\left( e^x \right) \times e^{f\left( x \right)} \right]\]

\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right)\frac{d}{dx} e^{f\left( x \right)} + e^{f\left( x \right)} \frac{d}{dx}f\left( e^x \right) \left[ \text{Using product rule } \right]\]

\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right) \times e^{f\left( x \right)} \frac{d}{dx}f\left( x \right) + e^{f\left( x \right)} \times f'\left( e^x \right)\frac{d}{dx}\left( e^x \right)\]

\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right) \times e^{f\left( x \right)} \times f'\left( x \right) + e^{f\left( x \right)} \times f'\left( e^x \right) \times e^x \]

\[\text{ Putting x } = 0, \text{ we get }, \]

\[\frac{dy}{dx} = f\left( e^0 \right) \times e^{f\left( 0 \right)} \times f'\left( 0 \right) + e^{f\left( 0 \right)} \times f'\left( e^0 \right) \times e^0 \]

\[ \Rightarrow \frac{dy}{dx} = f\left( 1 \right) e^{f\left( 0 \right)} \times f'\left( 0 \right) + e^{f\left( 0 \right)} \times f'\left( 1 \right) \times 1\]

\[ \Rightarrow \frac{dy}{dx} = 0 \times e^0 \times f'\left( 0 \right) + e^0 \times 2 \times 1 .........\left[ \because f\left( x \right) = f\left( 1 \right) = 0 \text{ and }f'\left( 1 \right) = 2 \right]\]

\[ \Rightarrow \frac{dy}{dx} = 0 + 1 \times 2 \times 1\]

\[ \Rightarrow \frac{dy}{dx} = 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.09 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.09 | Q 11 | पृष्ठ ११८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that `y=(4sintheta)/(2+costheta)-theta `


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate tan 5x° ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


Differential coefficient of sec(tan−1 x) is ______.


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×