मराठी

If F ( 0 ) = F ( 1 ) = 0 , F ′ ( 1 ) = 2 and Y = F ( E X ) E F ( X ) Write the Value of D Y D X at X = 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?

बेरीज

उत्तर

\[\text{ We have,} f\left( 0 \right) = f\left( 1 \right) = 0 , f'\left( 1 \right) = 2\]

\[\text { and, } \]

\[y = f\left( e^x \right) e^{f\left( x \right)}\]

\[\Rightarrow \frac{dy}{dx} = \frac{d}{dx}\left[ f\left( e^x \right) \times e^{f\left( x \right)} \right]\]

\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right)\frac{d}{dx} e^{f\left( x \right)} + e^{f\left( x \right)} \frac{d}{dx}f\left( e^x \right) \left[ \text{Using product rule } \right]\]

\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right) \times e^{f\left( x \right)} \frac{d}{dx}f\left( x \right) + e^{f\left( x \right)} \times f'\left( e^x \right)\frac{d}{dx}\left( e^x \right)\]

\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right) \times e^{f\left( x \right)} \times f'\left( x \right) + e^{f\left( x \right)} \times f'\left( e^x \right) \times e^x \]

\[\text{ Putting x } = 0, \text{ we get }, \]

\[\frac{dy}{dx} = f\left( e^0 \right) \times e^{f\left( 0 \right)} \times f'\left( 0 \right) + e^{f\left( 0 \right)} \times f'\left( e^0 \right) \times e^0 \]

\[ \Rightarrow \frac{dy}{dx} = f\left( 1 \right) e^{f\left( 0 \right)} \times f'\left( 0 \right) + e^{f\left( 0 \right)} \times f'\left( 1 \right) \times 1\]

\[ \Rightarrow \frac{dy}{dx} = 0 \times e^0 \times f'\left( 0 \right) + e^0 \times 2 \times 1 .........\left[ \because f\left( x \right) = f\left( 1 \right) = 0 \text{ and }f'\left( 1 \right) = 2 \right]\]

\[ \Rightarrow \frac{dy}{dx} = 0 + 1 \times 2 \times 1\]

\[ \Rightarrow \frac{dy}{dx} = 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.09 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.09 | Q 11 | पृष्ठ ११८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate log7 (2x − 3) ?


Differentiate `2^(x^3)` ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


Differentiate log (1 + x2) with respect to tan−1 x ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


Find the second order derivatives of the following function  x3 + tan x ?


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×