Advertisements
Advertisements
प्रश्न
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
उत्तर
\[\text{ Let y } = \left( \cos x \right)^x + \left( \sin x \right)^\frac{1}{x} \]
\[ \Rightarrow y = e^{ \log \left( \cos x\right)^x} + e^{\log \left( \sin x \right)^\frac{1}{x} } \]
\[ \Rightarrow y = e^{ x\log\left( \cos x \right) } + e^\frac{1}{x}\log\sin x\]
Differentiating with respect to x,
\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{x \log\cos x} \right) + \frac{d}{dx}\left( e^\frac{1}{x}\log \sin x \right)\]
\[ = e^{x \log\cos x} \times \frac{d}{dx}\left( x \log\cos x \right) + e^\frac{1}{x}\log \sin x \frac{d}{dx}\left( \frac{1}{x}\log\sin x \right)\]
\[ = e^{\log \left( \cos x \right)^x }\times \left[ x\frac{d}{dx}\left( \log\cos x \right) + \log\cos x \times \frac{d}{dx}\left( x \right) \right] + e^{\log \left( \sin x \right)^\frac{1}{x} }\times \left[ \frac{1}{x}\frac{d}{dx}\left( \log\sin x \right) + \log\sin x\frac{d}{dx}\left( \frac{1}{x} \right) \right]\]
\[ = \left( \cos x \right)^x \left[ x\left( \frac{1}{\cos x} \right)\frac{d}{dx}\left( \cos x \right) + \log\cos x\left( 1 \right) \right] + \left( \sin \right)^\frac{1}{x} \left[ \frac{1}{x} \times \frac{1}{\sin x} \times \frac{d}{dx}\left( \sin x \right) + \log\sin x\left( - \frac{1}{x^2} \right) \right]\]
\[ = \left( \cos x \right)^x \left[ x\left( \frac{1}{\cos x} \right)\left( - \sin x \right) + \log\cos x \right] + \left( \sin x \right)^\frac{1}{x} \left[ \frac{1}{x} \times \frac{1}{\sin x}\left( \cos x \right) - \frac{1}{x^2}\log\sin x \right]\]
\[ = \left( \cos x \right)^x \left[ \log\cos x - x \tan x \right] + \left( \sin x \right)^\frac{1}{x} \left[ \frac{\cot x}{x} - \frac{1}{x^2}\log\sin x \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate `2^(x^3)` ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
Find the minimum value of (ax + by), where xy = c2.
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
f(x) = 3x2 + 6x + 8, x ∈ R