Advertisements
Advertisements
प्रश्न
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
उत्तर
\[\text{ Let y } = x^{x^2 - 3} + \left( x - 3 \right)^{x^2} \]
\[ \text{ Also, let u } = x^{x^2 - 3} \text{ and }v = \left( x - 3 \right)^{x^2} \]
\[ \therefore y = u + v\]
Differentiate both sides with respect to x,
\[\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u }= x^{x^2 - 3} \]
\[ \therefore \log u = \log\left( x^{x^2 - 3} \right)\]
\[ \Rightarrow \log u = \left( x^2 - 3 \right) \log x\]
Differentiating with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \log x\frac{d}{dx}\left( x^2 - 3 \right) + \left( x^2 - 3 \right)\frac{d}{dx}\left( \log x \right)\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = \log x\left( 2x \right) + \left( x^2 - 3 \right)\left( \frac{1}{x} \right)\]
\[ \Rightarrow \frac{du}{dx} = x^{x^2 - 3} \left[ \frac{x^2 - 3}{x} + 2x \log x \right]\]
\[\text{ Also, v }= \left( x - 3 \right)^{x^2} \]
\[ \therefore \log v = \log \left( x - 3 \right)^{x^2} \]
\[ \Rightarrow \log v = x^2 \log\left( x - 3 \right)\]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \log\left( x - 3 \right)\frac{d}{dx}\left( x^2 \right) + x^2 \frac{d}{dx}\left[ \log\left( x - 3 \right) \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \log\left( x - 3 \right) \left( 2x \right) + x^2 \left( \frac{1}{x - 3} \right)\frac{d}{dx}\left( x - 3 \right)\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ 2x \log\left( x - 3 \right) + \frac{x^2}{x - 3} \times 1 \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x - 3 \right)^{x^2} \left[ \frac{x^2}{x - 3} + 2x\log\left( x - 3 \right) \right]\]
\[\text{ Substituing the expressions of }\frac{du}{dx}and \frac{dv}{dx}in equation \left( i \right)\]
\[\frac{dy}{dx} = x^{x^2 - 3} \left[ \frac{x^2 - 3}{x} + 2x \log x \right] + \left( x - 3 \right)^{x^2} \left[ \frac{x^2}{x - 3} + 2x \log\left( x - 3 \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate sin (3x + 5) ?
Differentiate tan (x° + 45°) ?
Differentiate sin (log x) ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
Differentiate sin(log sin x) ?
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]