Advertisements
Advertisements
प्रश्न
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
उत्तर
\[\text { Let, u } = \left( \cos x \right)^{\sin x} \]
Taking log on both sides,
\[\log u = \log \left( \cos x \right)^{\sin x } \]
\[ \Rightarrow \log u = \sin x \log\left( \cos x \right)\]
Differentiating it with respect to x using chain rule,
\[\frac{1}{u}\frac{du}{dx} = \sin x\frac{d}{dx}\left( \log \cos x \right) + \log \cos x\frac{d}{dx}\left( \sin x \right) \left[ \text{ using product rule } \right]\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = \sin x\left( \frac{1}{\cos x} \right)\frac{d}{dx}\left( \cos x \right) + \log \cos x\left( \cos x \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \left( \tan x \right) \times \left( - \sin x \right) + \log \log x\left( \cos x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( \cos x \right)^{ \sin x } \left[ \cos x \log\cos x - \sin x \tan x \right] . . . \left( i \right)\]
\[\text { Let, v }= \left( \sin x \right)^{\cos x }\]
Taking log on both sides,
\[\log v = \log \left( \sin x \right)^{\cos x} \]
\[ \Rightarrow \log v = \cos x \log\left( \sin x \right)\]
Differentiating it with respect to x using chain rule,
\[\frac{1}{v}\frac{dv}{dx} = \cos x\frac{d}{dx}\left( \log\sin x \right) + \log\sin x\frac{d}{dx}\left( \cos x \right) ..........\left[ \text { using product rule } \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \cos x\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) + \log\sin x\left( - \sin x \right)\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \cot x\left( \cos x \right) - \sin x \log\sin x \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( \sin x \right)^{\cos x } \left[ \cot x\left( \cos x \right) - \sin x \log\sin x \right]\]
\[\text { dividing equation }\left( i \right) by \left( ii \right), \]
\[ \therefore \frac{du}{dv} = \frac{\left( \cos x \right)^{\sin x } \left[ \cos x \log\cos x - \sin x \tan x \right]}{\left( \sin x \right)^{\cos x } \left[ \cot x\left( \cos x \right) - \sin x \log\sin x \right]}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e−x.
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function tan−1 x ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
f(x) = xx has a stationary point at ______.