Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
उत्तर
\[\Rightarrow \frac{dx}{dt} = \frac{- 1}{\sqrt{1 - \left( \frac{1}{\sqrt{1 + t^2}} \right)^2}}\frac{d}{dt}\left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{\sqrt{1 - \frac{1}{\left( 1 + t^2 \right)}}}\left\{ \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}} \right\}\frac{d}{dt}\left( 1 + t^2 \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\left( 1 + t^2 \right)^\frac{1}{2}}{\sqrt{1 + t^2 - 1}} \times \frac{1}{2 \left( 1 + t^2 \right)^\frac{3}{2}}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{t}{\sqrt{t^2} \times \left( 1 + t^2 \right)}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{1}{1 + t^2} . . . \left( i \right)\]
\[\text{ Now, y }= \sin^{- 1} \left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[\Rightarrow \frac{dy}{dt} = \frac{1}{\sqrt{1 - \left( \frac{1}{\sqrt{1 + t^2}} \right)^2}}\frac{d}{dt}\left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[ \Rightarrow \frac{dy}{dt} = \frac{1}{\sqrt{1 - \frac{1}{\left( 1 + t^2 \right)}}}\left\{ \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}} \right\}\frac{d}{dt}\left( 1 + t^2 \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\left( 1 + t^2 \right)^\frac{1}{2}}{\sqrt{1 + t^2 - 1}} \times \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{2\sqrt{t^2} \times \left( 1 + t^2 \right)}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{1 + t^2} . . . \left( ii \right)\]
\[\text{ Dividing equation } \left( ii \right) \text{ by } \left( i \right), \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1}{\left( 1 + t^2 \right)} \times \frac{\left( 1 + t^2 \right)}{- 1}\]
\[ \Rightarrow \frac{dy}{dx} = - 1\]
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles log cos x ?
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate sin2 (2x + 1) ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
Differentiate sin(log sin x) ?
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`