मराठी

Find D Y D X , When X = Cos − 1 1 √ 1 + T 2 and Y = Sin − 1 T √ 1 + T 2 , T ∈ R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?

उत्तर

\[\text{ We have, x } = \cos^{- 1} \left( \frac{1}{\sqrt{1 + t^2}} \right)\]

\[\Rightarrow \frac{dx}{dt} = \frac{- 1}{\sqrt{1 - \left( \frac{1}{\sqrt{1 + t^2}} \right)^2}}\frac{d}{dt}\left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{\sqrt{1 - \frac{1}{\left( 1 + t^2 \right)}}}\left\{ \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}} \right\}\frac{d}{dt}\left( 1 + t^2 \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\left( 1 + t^2 \right)^\frac{1}{2}}{\sqrt{1 + t^2 - 1}} \times \frac{1}{2 \left( 1 + t^2 \right)^\frac{3}{2}}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{t}{\sqrt{t^2} \times \left( 1 + t^2 \right)}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{1}{1 + t^2} . . . \left( i \right)\]
\[\text{ Now, y }= \sin^{- 1} \left( \frac{1}{\sqrt{1 + t^2}} \right)\]

\[\Rightarrow \frac{dy}{dt} = \frac{1}{\sqrt{1 - \left( \frac{1}{\sqrt{1 + t^2}} \right)^2}}\frac{d}{dt}\left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[ \Rightarrow \frac{dy}{dt} = \frac{1}{\sqrt{1 - \frac{1}{\left( 1 + t^2 \right)}}}\left\{ \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}} \right\}\frac{d}{dt}\left( 1 + t^2 \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\left( 1 + t^2 \right)^\frac{1}{2}}{\sqrt{1 + t^2 - 1}} \times \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{2\sqrt{t^2} \times \left( 1 + t^2 \right)}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{1 + t^2} . . . \left( ii \right)\]
\[\text{ Dividing equation } \left( ii \right) \text{ by } \left( i \right), \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1}{\left( 1 + t^2 \right)} \times \frac{\left( 1 + t^2 \right)}{- 1}\]
\[ \Rightarrow \frac{dy}{dx} = - 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.07 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.07 | Q 12 | पृष्ठ १०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate the following functions from first principles log cos x ?


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate sin2 (2x + 1) ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If  \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?

 


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Differentiate sin(log sin x) ?


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×