Advertisements
Advertisements
Question
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Solution
\[\Rightarrow \frac{dx}{dt} = \frac{- 1}{\sqrt{1 - \left( \frac{1}{\sqrt{1 + t^2}} \right)^2}}\frac{d}{dt}\left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{\sqrt{1 - \frac{1}{\left( 1 + t^2 \right)}}}\left\{ \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}} \right\}\frac{d}{dt}\left( 1 + t^2 \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\left( 1 + t^2 \right)^\frac{1}{2}}{\sqrt{1 + t^2 - 1}} \times \frac{1}{2 \left( 1 + t^2 \right)^\frac{3}{2}}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{t}{\sqrt{t^2} \times \left( 1 + t^2 \right)}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{1}{1 + t^2} . . . \left( i \right)\]
\[\text{ Now, y }= \sin^{- 1} \left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[\Rightarrow \frac{dy}{dt} = \frac{1}{\sqrt{1 - \left( \frac{1}{\sqrt{1 + t^2}} \right)^2}}\frac{d}{dt}\left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[ \Rightarrow \frac{dy}{dt} = \frac{1}{\sqrt{1 - \frac{1}{\left( 1 + t^2 \right)}}}\left\{ \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}} \right\}\frac{d}{dt}\left( 1 + t^2 \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\left( 1 + t^2 \right)^\frac{1}{2}}{\sqrt{1 + t^2 - 1}} \times \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{2\sqrt{t^2} \times \left( 1 + t^2 \right)}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{1 + t^2} . . . \left( ii \right)\]
\[\text{ Dividing equation } \left( ii \right) \text{ by } \left( i \right), \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1}{\left( 1 + t^2 \right)} \times \frac{\left( 1 + t^2 \right)}{- 1}\]
\[ \Rightarrow \frac{dy}{dx} = - 1\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles ecos x.
Differentiate etan x ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
Differential coefficient of sec(tan−1 x) is ______.
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function e6x cos 3x ?
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.