English

Differentiate Sin − 1 ( X + √ 1 − X 2 √ 2 ) , − 1 < X < 1 ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?

Sum

Solution

\[\text{ Let, y } = \sin^{- 1} \left\{ \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right\}\]

\[\text{ putting } x = \sin\theta\]

\[ \therefore y = \sin^{- 1} \left( \frac{\sin\theta + \sqrt{1 - \sin^2 \theta}}{\sqrt{2}} \right)\]

\[ \Rightarrow y = \sin^{- 1} \left( \frac{\sin\theta + \cos\theta}{\sqrt{2}} \right)\]

\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\theta\left( \frac{1}{\sqrt{2}} \right) + \cos\theta\left( \frac{1}{\sqrt{2}} \right) \right\}\]

\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\theta \cos\frac{\pi}{4} + \cos\theta \sin\frac{\pi}{4} \right\}\]

\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( \theta + \frac{\pi}{4} \right) \right\} . . . . . \left( 1 \right)\]

\[\text{ Here }, - 1 < x < 1\]

\[ \Rightarrow - 1 < \sin\theta < 1 \]

\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2} \]

\[ \Rightarrow \left( - \frac{\pi}{2} + \frac{\pi}{4} \right) < \left( \frac{\pi}{4} + \theta \right) < \frac{3\pi}{4}\]

\[ \Rightarrow - \frac{\pi}{4} < \left( \frac{\pi}{4} + \theta \right) < \frac{3\pi}{4}\]

\[\text{ So, from } \left( 1 \right), \]

\[ y = \theta + \frac{\pi}{4} ..........\left[ \text{ Since }, \sin^{- 1} \left( \sin\alpha \right) = \alpha, \text{ if }\alpha \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right] \]

\[ \Rightarrow y = \sin^{- 1} x + \frac{\pi}{4} \]

\[\text{ Differentiating it with respect to x }, \]

\[ \frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}} + 0\]

\[ \therefore \frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.03 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.03 | Q 14 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate \[3^{x \log x}\] ?


Differentiate \[e^{\tan 3 x} \] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?


If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate (log x)x with respect to log x ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


Differentiate sin(log sin x) ?


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×