Advertisements
Advertisements
Question
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Solution
\[\text{ Let, y } = \sin^{- 1} \left\{ \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right\}\]
\[\text{ putting } x = \sin\theta\]
\[ \therefore y = \sin^{- 1} \left( \frac{\sin\theta + \sqrt{1 - \sin^2 \theta}}{\sqrt{2}} \right)\]
\[ \Rightarrow y = \sin^{- 1} \left( \frac{\sin\theta + \cos\theta}{\sqrt{2}} \right)\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\theta\left( \frac{1}{\sqrt{2}} \right) + \cos\theta\left( \frac{1}{\sqrt{2}} \right) \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\theta \cos\frac{\pi}{4} + \cos\theta \sin\frac{\pi}{4} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( \theta + \frac{\pi}{4} \right) \right\} . . . . . \left( 1 \right)\]
\[\text{ Here }, - 1 < x < 1\]
\[ \Rightarrow - 1 < \sin\theta < 1 \]
\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2} \]
\[ \Rightarrow \left( - \frac{\pi}{2} + \frac{\pi}{4} \right) < \left( \frac{\pi}{4} + \theta \right) < \frac{3\pi}{4}\]
\[ \Rightarrow - \frac{\pi}{4} < \left( \frac{\pi}{4} + \theta \right) < \frac{3\pi}{4}\]
\[\text{ So, from } \left( 1 \right), \]
\[ y = \theta + \frac{\pi}{4} ..........\left[ \text{ Since }, \sin^{- 1} \left( \sin\alpha \right) = \alpha, \text{ if }\alpha \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right] \]
\[ \Rightarrow y = \sin^{- 1} x + \frac{\pi}{4} \]
\[\text{ Differentiating it with respect to x }, \]
\[ \frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}} + 0\]
\[ \therefore \frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}}\]
APPEARS IN
RELATED QUESTIONS
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate \[3^{x \log x}\] ?
Differentiate \[e^{\tan 3 x} \] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
Differentiate sin(log sin x) ?
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.