Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
उत्तर
\[\text{ Let, y } = \sin^{- 1} \left\{ \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right\}\]
\[\text{ putting } x = \sin\theta\]
\[ \therefore y = \sin^{- 1} \left( \frac{\sin\theta + \sqrt{1 - \sin^2 \theta}}{\sqrt{2}} \right)\]
\[ \Rightarrow y = \sin^{- 1} \left( \frac{\sin\theta + \cos\theta}{\sqrt{2}} \right)\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\theta\left( \frac{1}{\sqrt{2}} \right) + \cos\theta\left( \frac{1}{\sqrt{2}} \right) \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\theta \cos\frac{\pi}{4} + \cos\theta \sin\frac{\pi}{4} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( \theta + \frac{\pi}{4} \right) \right\} . . . . . \left( 1 \right)\]
\[\text{ Here }, - 1 < x < 1\]
\[ \Rightarrow - 1 < \sin\theta < 1 \]
\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2} \]
\[ \Rightarrow \left( - \frac{\pi}{2} + \frac{\pi}{4} \right) < \left( \frac{\pi}{4} + \theta \right) < \frac{3\pi}{4}\]
\[ \Rightarrow - \frac{\pi}{4} < \left( \frac{\pi}{4} + \theta \right) < \frac{3\pi}{4}\]
\[\text{ So, from } \left( 1 \right), \]
\[ y = \theta + \frac{\pi}{4} ..........\left[ \text{ Since }, \sin^{- 1} \left( \sin\alpha \right) = \alpha, \text{ if }\alpha \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right] \]
\[ \Rightarrow y = \sin^{- 1} x + \frac{\pi}{4} \]
\[\text{ Differentiating it with respect to x }, \]
\[ \frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}} + 0\]
\[ \therefore \frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cos x ?
Differentiate tan 5x° ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[e^x \log \sin 2x\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
Find the second order derivatives of the following function x cos x ?
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
Find the minimum value of (ax + by), where xy = c2.
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.