हिंदी

Find the Minimum Value of (Ax + By), Where Xy = C2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the minimum value of (ax + by), where xy = c2.

उत्तर

Let z = ax + by    .....(1)

Given:
xy = c2  or \[y = \frac{c^2}{x}\]

Putting 

\[y = \frac{c^2}{x}\] in (1), we get 

z = ax + \[\frac{b c^2}{x}\]

Differentiating both sides w.r.t. x, we get

\[\frac{dz}{dx} = a - \frac{b c^2}{x^2}\]

For maxima or minima,

\[\frac{dz}{dx} = 0\]

⇒ \[a - \frac{b c^2}{x^2} = 0\]

⇒ \[x^2 = \frac{b c^2}{a}\]

⇒ \[x = \pm c\sqrt{\frac{b}{a}}\]

Now,

\[\frac{d^2 z}{d x^2} = \frac{2b c^2}{x^3}\]

At \[x = c\sqrt{\frac{b}{a}}\] , \[\frac{d^2 z}{d x^2} = \frac{2b c^2}{\left( c\sqrt{\frac{b}{a}} \right)^3} > 0\]

\[\therefore x = c\sqrt{\frac{b}{a}}\] is the point of minima.
At \[x =  - c\sqrt{\frac{b}{a}}\], \[\frac{d^2 z}{d x^2} = \frac{2b c^2}{\left( - c\sqrt{\frac{b}{a}} \right)^3} < 0\]

\[\therefore x = - c\sqrt{\frac{b}{a}}\] is the point of maxima.

So,
When \[x = c\sqrt{\frac{b}{a}}\], \[y = \frac{c^2}{x} = \frac{c^2}{c\sqrt{\frac{b}{a}}} = c\sqrt{\frac{a}{b}}\]

\[\therefore z_{\text { minimum}} = ac\sqrt{\frac{b}{a}} + bc\sqrt{\frac{a}{b}} = \frac{abc + abc}{\sqrt{ab}} = \frac{2abc}{\sqrt{ab}} = 2c\sqrt{ab}\]

Thus, the minimum value of (ax + by), where xy = c2 is \[2c\sqrt{ab}\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles log cos x ?


Differentiate tan (x° + 45°) ?


Differentiate \[3^{e^x}\] ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×