Advertisements
Advertisements
प्रश्न
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
उत्तर
\[\text{Let } y = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\]
\[\text{ Differentiate it with respect to x we get }, \]
\[\frac{d y}{d x} = \frac{d}{dx} \left( \frac{1 + \sin x}{1 - \sin x} \right)^\frac{1}{2} \]
\[ = \frac{1}{2} \left( \frac{1 + \sin x}{1 - \sin x} \right)^{\frac{1}{2} - 1} \frac{d}{dx}\left( \frac{1 + \sin x}{1 - \sin x} \right)\]
\[ = \frac{1}{2} \left( \frac{1 - \sin x}{1 + \sin x} \right)^\frac{1}{2} \left[ \frac{\left( 1 - \sin x \right)\left( \cos x \right) - \left( 1 + \sin x \right)\left( - \cos x \right)}{\left( 1 - \sin x \right)^2} \right]\]
\[ = \frac{1}{2}\frac{\left( 1 - \sin x \right)^\frac{1}{2}}{\left( 1 + \sin x \right)^\frac{1}{2}}\left[ \frac{\cos x - \cos x \sin x + \cos x + \sin x \cos x}{\left( 1 - \sin x \right)^2} \right]\]
\[ = \frac{1}{2} \times \frac{2\cos x}{\sqrt{1 + \sin x}\left( 1 - \sin x \right)\frac{3}{2}}\]
\[ = \frac{\cos x}{\sqrt{1 + \sin x}\left( 1 - \sin x \right)\frac{3}{2}}\]
\[ = \frac{\cos x}{\sqrt{1 + \sin x}\sqrt{1 - \sin x}\left( 1 - \sin x \right)}\]
\[ = \frac{\cos x}{\sqrt{1 - \sin^2 x} \times \left( 1 - \sin x \right)}\]
\[ = \frac{\cos x}{\cos x\left( 1 - \sin x \right)} \left[ \text{Using } 1 - \sin^2 x = \cos^2 x \right]\]
\[ = \frac{1}{\left( 1 - \sin x \right)} \times \frac{\left( 1 + \sin x \right)}{\left( 1 + \sin x \right)}\]
\[ = \frac{\left( 1 + \sin x \right)}{\left( 1 - \sin^2 x \right)}\]
\[ = \frac{1 + \sin x}{\cos^2 x}\]
\[ = \frac{1}{\cos x}\left( \frac{1}{\cos x} + \frac{\sin x}{\cos x} \right)\]
\[ = \sec x\left( \sec x + \tan x \right)\]
\[\text{Hence }, \frac{dy}{dx} = \sec x\left( \sec x + \tan x \right)\]
APPEARS IN
संबंधित प्रश्न
Differentiate tan (x° + 45°) ?
Differentiate sin2 (2x + 1) ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
f(x) = 3x2 + 6x + 8, x ∈ R
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.