Advertisements
Advertisements
प्रश्न
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
विकल्प
\[\frac{1 + x}{1 + \log x}\]
\[\frac{1 - \log x}{1 + \log x}\]
not defined
\[\frac{\log x}{\left( 1 + \log x \right)^2}\]
उत्तर
\[\frac{\log x}{\left( 1 + \log x \right)^2}\]
\[\text{ We have,} x^y = e^{x - y} \]
\[\text{ Taking log on both sides we get }, \]
\[ \Rightarrow y \log x = \left( x - y \right) \log_e e\]
\[ \Rightarrow y \log x = x - y\]
\[ \Rightarrow y \log x + y = x\]
\[ \Rightarrow y\left( 1 + \log x \right) = x\]
\[ \Rightarrow y = \frac{x}{1 + \log x}\]
\[\Rightarrow \frac{dy}{dx} = \frac{\left( 1 + \log x \right) \times 1 - x \times \left( 0 + \frac{1}{x} \right)}{\left( 1 + \log x \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1 + \log x - 1}{\left( 1 + \log x \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\log x}{\left( 1 + \log x \right)^2}\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles eax+b.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Write the derivative of sinx with respect to cos x ?
Differentiate x2 with respect to x3
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
Find the second order derivatives of the following function ex sin 5x ?
Find the second order derivatives of the following function e6x cos 3x ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]