Advertisements
Advertisements
प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
उत्तर
Let ABC be the right angled triangle with
base b and hypotenuse h.
Given that b+h=k
Let A be the area of the right triangle.
`A=1/2 xxbxxsqrt(h^2-b^2)`
`A^2=1/4b^2(h^2-b^2)`
`A^2=b^2/4((k-b)^2-b^2) [because h=k-b]`
`A^2=b^2/4(k^2+b^2-2kb-b^2)`
`A^2=b^2/4(k^2-2kb)`
`A^2=(b^2k^2-2kb^3)/4`
``Differentiating the above function with respect to be, we have
`2A (dA)/(db)=(2bk^2-6kb^2)/4.......(1)`
`=>(dA)/(db)=(bk^2-3kb^2)/(2A)`
For the area to be maximum, we have
`(dA)/(db)=0`
`=>bk^2-3kb^2=0`
`bk=3b^2`
`b=k/3`
Again differentiating the function in equation (1), with respect to b, we have
`2((dA)/(db))2+2A(d^2A)/(db^2)=(2k^2-12kb)/4.....(2)`
Now substituting 0 and b in equation (2), we have
`2A(d^2A)/(db^2)=(2k^2-12k(k/3))/4`
`2A(d^2A)/(db^2)=(6k^2-12k^2)/12`
`2A(d^2A)/(db^2)=-k^2/2`
`2A(d^2A)/(db^2)=-k^2/(4A)<0`
Thus area is maximum at b=k/3.
Now, ` h=k-k/3=(2k)/3`
Let be he angle between the base of triangle and hypotenuse of the right triangle.
Thus, `costheta=b/h=(k/3)/((2k)/3)=1/2`
`=>theta=cos^(-1)(1/2)=pi/3`
APPEARS IN
संबंधित प्रश्न
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to