Advertisements
Advertisements
प्रश्न
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.
उत्तर
The information given in the question can be written as:
3x + 2y + z = 1600 ... (1)
4x + y + 3z = 2300 ... (2)
x + y + z = 900 ... (3)
Here,
`A=[[3,2,1],[4,1,3],[1,1,1]] and B=[[1600],[2300],[900]]`
Now,
`|A|=3(-1)^(1+1)|[1,3],[1,1]|+2(-1)^(1+2)|[4,3],[1,1]|+1(-1)^(1+3)|[4,1],[1,1]|`
`|A|=3|[1,3],[1,1]|-2|[4,3],[1,1]|+1|[4,1],[1,1]|`
`⇒|A|=3(1−3)−2(4−3)+1(4−1)=−6−2+3=−5≠0`
So, A is invertible.
Let Cij be the cofactor of aij in A=[aij].
Then,
`C_11=(−1)^(1+1)|[1,3],[1,1]|=-2`
`C_12=(−1)^(1+2)|[4,3],[1,1]|=-1`
`C_13=(−1)^(1+3)|[4,1],[1,1]|=3`
`C_21=(−1)^(2+1)|[2,1],[1,1]|=-1`
`C_22=(−1)^(2+2)|[3,1],[1,1]|=2`
`C_23=(−1)^(2+3)|[3,2],[1,1]|=-1`
`C_31=(−1)^(3+1)|[2,1],[1,3]|=5`
`C_32=(−1)^(3+2)|[3,1],[4,3]|=-5`
`C_33=(−1)^(3+3)|[3,2],[4,1]|=-5`
cofactor of A=`[[C_11,C_12,C_13],[C_21,C_22,C_23],[C_31,C_32,C_33]]`
cofactor of A=`[[-2,-1,3],[-1,2,-1],[5,-5,-5]]`
`therefore adjA=[[-2,-1,3],[-1,2,-1],[5,-5,-5]]^T=[[-2,-1,5],[-1,2,-5],[3,-1,-5]]`
`i.e A^(-1)=`
`A^(-1)=-1/5[[-2,-1,5],[-1,2,-5],[3,-1,-5]]`
Thus, the solution of the system of equations is given by
`X=A^(-1)B=-1/5[[-2,-1,5],[-1,2,-5],[3,-1,-5]]`
`=>[[x],[y],[z]]=-1/5[[-3200-2300+4500],[-1600+4600-4500],[4800-2300-4500]]`
`=>[[x],[y],[z]]=-1/5[[-1000],[-1500],[-2000]]`
`=>[[x],[y],[z]]=[[200],[300],[400]]`
Hence, the money awarded for sincerity, truthfulness and helpfulness are Rs 200, Rs 300 and Rs 400, respectively.
Here, the determinant of the matrix A is non-zero. Therefore, x, y and z will have unique solutions: x = 200, y = 300 and z = 400.
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the matrix X for which
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If A is an invertible matrix, then which of the following is not true ?
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
If A is an invertible matrix, then det (A−1) is equal to ____________ .
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
|A–1| ≠ |A|–1, where A is non-singular matrix.
A square matrix A is invertible if det A is equal to ____________.
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.