Advertisements
Advertisements
प्रश्न
For the matrix
उत्तर
\[A = \begin{bmatrix}1 & - 1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}3 & 0 \\ 2 & 10\end{vmatrix} = 30 C_{12} = - \begin{vmatrix}2 & 0 \\ 18 & 10\end{vmatrix} = - 20 C_{13} = \begin{vmatrix}2 & 3 \\ 18 & 2\end{vmatrix} = - 50\]
\[ C_{21} = - \begin{vmatrix}- 1 & 1 \\ 2 & 10\end{vmatrix} = 12 C_{22} = \begin{vmatrix}1 & 1 \\ 18 & 10\end{vmatrix} = - 8 C_{23} = - \begin{vmatrix}1 & - 1 \\ 18 & 2\end{vmatrix} = - 20\]
\[ C_{31} = \begin{vmatrix}- 1 & 1 \\ 3 & 0\end{vmatrix} = - 3 C_{32} = - \begin{vmatrix}1 & 1 \\ 2 & 0\end{vmatrix} = 2 C_{33} = \begin{vmatrix}1 & - 1 \\ 2 & 3\end{vmatrix} = 5\]
\[adj A = \begin{bmatrix}30 & - 20 & - 50 \\ 12 & - 8 & - 20 \\ - 3 & 2 & 5\end{bmatrix}^T = \begin{bmatrix}30 & 12 & - 3 \\ - 20 & - 8 & 2 \\ - 50 & - 20 & 5\end{bmatrix}\]
\[ \therefore A(adj A) = \begin{bmatrix}1 & - 1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10\end{bmatrix}\begin{bmatrix}30 & 12 & - 3 \\ - 20 & - 8 & 2 \\ - 50 & - 20 & 5\end{bmatrix} = \begin{bmatrix}30 + 20 - 50 & 12 + 18 - 20 & - 3 - 2 + 5 \\ 60 - 60 - 0 & 24 - 24 - 0 & - 6 + 6 + 0 \\ 540 - 40 - 500 & 216 - 16 - 200 & - 54 + 4 + 50\end{bmatrix} = \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
Show that
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the matrix X satisfying the equation
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
If A is an invertible matrix, then which of the following is not true ?
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A and B are invertible matrices, then which of the following is not correct?
|A–1| ≠ |A|–1, where A is non-singular matrix.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.