Advertisements
Advertisements
प्रश्न
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
उत्तर
A ` = [(1,0,0),(3,3,0),(5,2,-1)]`
|A| = `|(1,0,0),(3,3,0),(5,2,-1)|`
= - 1[- 3 - 0]
= 1 × (- 3)
= - 3
`"A"_11 = (- 1)^(1 + 1) |(3,0),(2,-1)| = (- 1)^2 [- 3 - 0]`
`= 1 xx (- 3) = - 3`
`"A"_12 = (- 1)^(1 + 2) |(3,0),(5,-1)| = (- 1)^3 [- 3 - 0]`
`= - 1 xx (- 3) = 3`
`"A"_13 = (- 1)^(1 + 3) |(3,3),(5,2)| = (- 1)^4 [6 - 15]`
`= 1 xx (- 9) = - 9`
`"A"_21 = (- 1)^(2 + 1) |(0,0),(2,-1)| = (- 1)^3 [0 - 0] = 0`
`"A"_22 = (- 1)^(2 + 2) |(1,0),(5,-1)| = (- 1)^4 [- 1 - 0]`
`= 1 xx (- 1) = - 1`
`"A"_23 = (- 1)^(2 + 3) |(1,0),(5,2)| = (- 1)^5 [2 - 0]`
`= - 1 xx 2 = - 2`
`"A"_31 = (- 1)^(3 + 1) |(0,0),(3,0)| = (- 1)^4 [0 - 0]` = 0
`"A"_32 = (- 1)^(3 + 2) |(1,0),(3,3)| = (- 1)^5 [0 - 0]` = 0
`"A"_33 = (- 1)^(3 + 3) |(1,0),(3,3)| = (- 1)^6 [3 - 0] = 1 xx 3 = 3`
∴ adj A = `[(-3,3,-9),(0,-1,-2),(0,0,3)] = [(-3,0,0),(3,-1,0),(-9,-2,3)]`
`"A"^-1 = 1/abs "A" ("adjA")`
`= 1/abs "A" [("A"_11,"A"_21,"A"_31),("A"_12,"A"_22,"A"_32),("A"_13,"A"_23,"A"_33)]`
`1/-3 [(-3,0,0),(3,-1,0),(-9,-2,3)]`
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Show that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the matrix X for which
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
If A and B are invertible matrices, then which of the following is not correct?
|A–1| ≠ |A|–1, where A is non-singular matrix.
A square matrix A is invertible if det A is equal to ____________.
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.