हिंदी

Find the inverse of the matrices (if it exists). [10033052-1] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse of the matrices (if it exists).

`[(1,0,0),(3,3,0),(5,2,-1)]`

योग

उत्तर

A ` = [(1,0,0),(3,3,0),(5,2,-1)]`

|A| = `|(1,0,0),(3,3,0),(5,2,-1)|`

= - 1[- 3 - 0] 

= 1 × (- 3)

= - 3

`"A"_11 = (- 1)^(1 + 1) |(3,0),(2,-1)| = (- 1)^2 [- 3 - 0]`

`= 1 xx (- 3) = - 3`

`"A"_12 = (- 1)^(1 + 2) |(3,0),(5,-1)| = (- 1)^3 [- 3 - 0]`

`= - 1 xx (- 3) = 3`

`"A"_13 = (- 1)^(1 + 3) |(3,3),(5,2)| = (- 1)^4 [6 - 15]`

`= 1 xx (- 9) = - 9`

`"A"_21 = (- 1)^(2 + 1) |(0,0),(2,-1)| = (- 1)^3 [0 - 0] = 0`

`"A"_22 = (- 1)^(2 + 2) |(1,0),(5,-1)| = (- 1)^4 [- 1 - 0]`

`= 1 xx (- 1) = - 1`

`"A"_23 = (- 1)^(2 + 3) |(1,0),(5,2)| = (- 1)^5 [2 - 0]`

`= - 1 xx 2 = - 2`

`"A"_31 = (- 1)^(3 + 1) |(0,0),(3,0)| = (- 1)^4 [0 - 0]` = 0

`"A"_32 = (- 1)^(3 + 2) |(1,0),(3,3)| = (- 1)^5 [0 - 0]` = 0

`"A"_33 = (- 1)^(3 + 3) |(1,0),(3,3)| = (- 1)^6 [3 - 0] = 1 xx 3 = 3`

∴ adj A = `[(-3,3,-9),(0,-1,-2),(0,0,3)] = [(-3,0,0),(3,-1,0),(-9,-2,3)]`

`"A"^-1 = 1/abs "A" ("adjA")`

`= 1/abs "A" [("A"_11,"A"_21,"A"_31),("A"_12,"A"_22,"A"_32),("A"_13,"A"_23,"A"_33)]`

`1/-3 [(-3,0,0),(3,-1,0),(-9,-2,3)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise 4.5 [पृष्ठ १३२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise 4.5 | Q 8 | पृष्ठ १३२

संबंधित प्रश्न

Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Verify A (adj A) = (adj A) A = |A|I.

`[(2,3),(-4,-6)]`


Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

If  \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.


Find the inverse of the following matrix:

\[\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]


If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]


Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


If A and B are invertible matrices, then which of the following is not correct?


|A–1| ≠ |A|–1, where A is non-singular matrix.


A square matrix A is invertible if det A is equal to ____________.


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


Read the following passage:

Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250.

Based on the above information, answer the following questions:

  1. Convert the given above situation into a matrix equation of the form AX = B. (1)
  2. Find | A |. (1)
  3. Find A–1. (2)
    OR
    Determine P = A2 – 5A. (2)

To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×