हिंदी

If a = ⎡ ⎢ ⎣ 3 − 3 4 2 − 3 4 0 − 1 1 ⎤ ⎥ ⎦ , Show that a − 1 = a 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]

उत्तर

\[\text{ We have, } A = \begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix}\]
\[ A^2 = \begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix}\begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix} = \begin{bmatrix} 9 - 6 + 0 & - 9 + 9 - 4 & 12 - 12 + 4\\6 - 6 + 0 & - 6 + 9 - 4 & 8 - 12 + 4\\0 - 2 + 0 & 0 + 3 - 1 & 0 - 4 + 1 \end{bmatrix} = \begin{bmatrix} 3 & - 4 & 4\\ 0 & - 1 & 0\\ - 2 & 2 & - 3 \end{bmatrix}\]
\[\text{ Now,} A^3 = A^2 \times A^{} = \begin{bmatrix} 3 & - 4 & 4\\ 0 & - 1 & 0\\ - 2 & 2 & - 3 \end{bmatrix}\begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix} = \begin{bmatrix} 9 - 8 & - 9 + 12 - 4 & 12 - 16 + 4\\ 0 - 2 + 0 & 0 + 3 + 0 & - 4\\ - 6 + 4 + 0 & 6 - 6 + 3 & - 8 + 8 - 3 \end{bmatrix} = \begin{bmatrix} 1 & - 1 & 0\\ - 2 & 3 & - 4\\ - 2 & 3 & - 3 \end{bmatrix}\]
\[\text{ Again, }A^3 \times A = \begin{bmatrix}  1 & - 1 & 0\\ - 2 & 3 & - 4\\ - 2 & 3 & - 3 \end{bmatrix}\begin{bmatrix} 3 & - 3 & 4\\2 & - 3 & 4\\0 & - 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 - 2 + 0 & - 3 + 3 + 0 & 4 - 4 + 0\\ - 6 + 6 & 6 - 9 + 4 & - 8 + 12 - 4\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = I_3 [\text{ Identity matrix of order 3 }]\]
\[ \Rightarrow A^3 \times A = I_3 \]
\[ \Rightarrow A^3 = A^{- 1}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 28 | पृष्ठ २४

संबंधित प्रश्न

Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the inverse of the following matrix:

\[\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 0 & - 1 \\ 3 & 4 & 5 \\ - 2 & - 4 & - 7\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


Given  \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.


Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\]  and hence show that \[A\left( adj A \right) = \left| A \right| I_3\]. 


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If A is a singular matrix, then adj A is ______.


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×