हिंदी

Show that a = [ 5 3 − 1 − 2 ] Satisfies the Equation X 2 − 3 X − 7 = 0 . Thus, Find A−1. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.

उत्तर

\[A = \begin{bmatrix} 5 & 3\\- 1 & - 2 \end{bmatrix} \]
\[ A^2 = \begin{bmatrix} 22 & 9\\ - 3 & 1 \end{bmatrix}\]
\[\text{ If } I_2\text{ is the identity matrix of order 2, then}\]
\[ A^2 - 3A - 7 I_2 = \begin{bmatrix} 22b & 9\\ - 3 & 1 \end{bmatrix} - 3\begin{bmatrix} 5 & 3\\ - 1 & - 2 \end{bmatrix} - 7\begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} \]
\[ \Rightarrow A^2 - 3A - 7 I_2 = \begin{bmatrix} 22 - 15 - 7 & 9 - 9 - 0\\ - 3 + 3 + 0 & 1 + 6 - 7 \end{bmatrix} = \begin{bmatrix} 0 & 0\\0 & 0 \end{bmatrix} = 0\]
\[ \Rightarrow A^2 - 3A - 7 I_2 = 0\]
\[\text{ Thus, A satisfies }x^2 - 3x - 7 = 0 . \]
Now, 
\[ A^2 - 3A - 7 I_2 = 0\]
\[ \Rightarrow A^2 - 3A = 7 I_2 \]
\[ \Rightarrow A^{- 1} \left( A^2 - 3A \right) = A^{- 1} \times 7 I_2 \left[\text{ Pre - multiplying both sides by } A^{- 1} \right]\]
\[ \Rightarrow A - 3 I_2 = 7 A^{- 1} \]
\[ \Rightarrow \begin{bmatrix} 5 & 3 \\ - 1 & - 2 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} =  7 A^{- 1} \]
\[ \Rightarrow A^{- 1} = \frac{1}{7} \begin{bmatrix} 5 - 3 & 3 - 0\\- 1 - 0 & - 2 - 3 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2 & 3\\- 1 & - 5 \end{bmatrix} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 22 | पृष्ठ २४

संबंधित प्रश्न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]`  find  `(AB)^(-1)`


Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & - 1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & - 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]

Show that

(i) \[\left[ F \left( \alpha \right) \right]^{- 1} = F \left( - \alpha \right)\]
(ii) \[\left[ G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)\]
(iii) \[\left[ F \left( \alpha \right)G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)F \left( - \alpha \right)\]

If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.


If A is an invertible matrix, then which of the following is not true ?


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×