Advertisements
Advertisements
प्रश्न
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
विकल्प
\[\frac{1}{2}\begin{bmatrix}2 & 4 \\ 3 & - 5\end{bmatrix}\]
\[\frac{1}{2}\begin{bmatrix}- 2 & 4 \\ 3 & 5\end{bmatrix}\]
\[\begin{bmatrix}2 & 4 \\ 3 & - 5\end{bmatrix}\]
none of these
उत्तर
\[\frac{1}{2}\begin{bmatrix}2 & 4 \\ 3 & - 5\end{bmatrix}\]
\[A = BX\]
\[ \Rightarrow B^{- 1} A = B^{- 1} BX\]
\[ \Rightarrow B^{- 1} A = IX\]
\[ \Rightarrow X = B^{- 1} A . . . \left( 1 \right)\]
Now,
\[B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\]
\[adjB = \begin{bmatrix}2 & 0 \\ 0 & 1\end{bmatrix}\]
\[\left| B \right| = 2\]
\[ \therefore B^{- 1} = \frac{1}{\left| B \right|}adjB = \frac{1}{2}\begin{bmatrix}2 & 0 \\ 0 & 1\end{bmatrix}\]
On putting the value of B-1 in eq. (1), we get
\[X = \frac{1}{2}\begin{bmatrix}2 & 0 \\ 0 & 1\end{bmatrix}\begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{2}\begin{bmatrix}2 & 4 \\ 3 & - 5\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.