हिंदी

If a = ⎡ ⎢ ⎣ 2 − 3 5 3 2 − 4 1 1 − 2 ⎤ ⎥ ⎦ , Find A−1 and Hence Solve the System of Linear Equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, X + Y + 2z = −3 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3

उत्तर

Here,
\[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{vmatrix}\]
\[ = 2\left( - 4 + 4 \right) + 3\left( - 6 + 4 \right) + 5(3 - 2)\]
\[ = 0 - 6 + 5\]
\[ = - 1\]
\[ {\text{ Let }C}_{ij} {\text{ be the co factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & - 4 \\ 1 & - 2\end{vmatrix} = 0, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & - 4 \\ 1 & - 2\end{vmatrix} = 2, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 2 \\ 1 & 1\end{vmatrix} = 1\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 3 & 5 \\ 1 & - 2\end{vmatrix} = - 1, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 5 \\ 1 & - 2\end{vmatrix} = - 9, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & - 3 \\ 1 & 1\end{vmatrix} = - 5\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 3 & 5 \\ 2 & - 4\end{vmatrix} = 2 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 5 \\ 3 & - 4\end{vmatrix} = 23, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & - 3 \\ 3 & 2\end{vmatrix} = 13\]
\[adj A = \begin{bmatrix}0 & 2 & 1 \\ - 1 & - 9 & - 5 \\ 2 & 23 & 13\end{bmatrix}^T \]
\[ = \begin{bmatrix}0 & - 1 & 2 \\ 2 & - 9 & 23 \\ 1 & - 5 & 13\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 1}\begin{bmatrix}0 & - 1 & 2 \\ 2 & - 9 & 23 \\ 1 & - 5 & 13\end{bmatrix}\]
The given system of equations can be written in matrix form as follows:
\[\begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}11 \\ - 5 \\ - 3\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 1}\begin{bmatrix}0 & - 1 & 2 \\ 2 & - 9 & 23 \\ 1 & - 5 & 13\end{bmatrix}\begin{bmatrix}11 \\ - 5 \\ - 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 1}\begin{bmatrix}0 + 5 - 6 \\ 22 + 45 - 69 \\ 11 + 25 - 39\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 1}\begin{bmatrix}- 1 \\ - 2 \\ - 3\end{bmatrix}\]
\[ \Rightarrow x = \frac{- 1}{- 1}, y = \frac{- 2}{- 1}\text{ and }z = \frac{- 3}{- 1}\]
\[ \therefore x = 1, y = 2\text{ and }z = 3\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 6 | पृष्ठ १५

संबंधित प्रश्न

Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Verify A (adj A) = (adj A) A = |A|I.

`[(2,3),(-4,-6)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(3,3,0),(5,2,-1)]`


Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


Given  \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If \[A^2 - A + I = 0\], then the inverse of A is __________ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\]  be such that \[A^{- 1} = kA\], then k equals ___________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

A square matrix A is invertible if det A is equal to ____________.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3


If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×