Advertisements
Advertisements
प्रश्न
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
उत्तर
\[A = \begin{bmatrix} 7 & 1\\4 & - 3 \end{bmatrix}\]
We know
\[A = IA\]
\[ \Rightarrow \begin{bmatrix} 7 & 1\\4 & - 3 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix} 1 & \frac{1}{7}\\ 4 & - 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & 0\\ 0 & 1 \end{bmatrix}A \left(\text{ Applying }R_1 \to \frac{1}{7} R_1 \right)\]
\[ \Rightarrow \begin{bmatrix} 1 & \frac{1}{7}\\ 0 & - \frac{25}{7} \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & 0\\ - \frac{4}{7} & 1 \end {bmatrix} A \left(\text{ Applying }R_2 \to R_2 - 4 R_1 \right)\]
\[ \Rightarrow \begin{bmatrix} 1 & \frac{1}{7}\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & 0\\\frac{4}{25} & - \frac{7}{25} \end{bmatrix} A \left(\text{ Applying }R_2 \to - \frac{7}{25} R_2 \right)\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{25} & \frac{1}{25}\\\frac{4}{25} & - \frac{7}{25} \end{bmatrix} A \left(\text{ Applying }R_1 \to R_1 - \frac{1}{7} R_2 \right)\]
\[ \therefore A^{- 1} = \frac{1}{25}\begin{bmatrix} 3 & 1\\4 & - 7 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
prove that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.