Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
उत्तर
\[A = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{vmatrix} = 1\left( 1 - 4 \right) - 2\left( 2 - 4 \right) + 2\left( 4 - 2 \right) = - 3 + 4 + 4 = 5 \]
\[\text{ Since, }\left| A \right| \neq 0\]
Hence, A is invertible .
Now,
\[ A^2 = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 4 + 4 & 2 + 2 + 4 & 2 + 4 + 2\\2 + 2 + 4 & 4 + 1 + 4 & 4 + 2 + 2\\2 + 4 + 2 & 4 + 2 + 2 & 1 + 4 + 4 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8\\8 & 9 & 8\\8 & 8 & 9 \end{bmatrix}\]
\[\text{ Now, }A^2 - 4A - 5I = \begin{bmatrix} 9 & 8 & 8\\8 & 9 & 8\\8 & 8 & 9 \end{bmatrix} - 4\begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} - 5\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 9 - 4 - 5 & 8 - 8 - 0 & 8 - 8 - 0\\8 - 8 - 0 & 9 - 4 - 5 & 8 - 8 - 0\\8 - 8 - 0 & 8 - 8 - 0 & 9 - 4 - 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix} = O \]
\[ \Rightarrow A^2 - 4A - 5I = O [\text{ Proved }]\]
\[\text{ Again,} A^2 - 4A - 5I = O\]
\[ \Rightarrow A^{- 1} \left( A^2 - 4A - 5I \right) = A^{- 1} O [\text{ Pre - multiplying with }A^{- 1} ]\]
\[ \Rightarrow A^{- 1} A^2 - 4 A^{- 1} A - 5 A^{- 1} = O\]
\[ \Rightarrow A - 4I = 5 A^{- 1} \]
\[ \Rightarrow 5 A^{- 1} = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 - 4 & 2 - 0 & 2 - 0\\2 - 0 & 1 - 4 & 2 - 0\\2 - 0 & 2 - 0 & 1 - 4 \end{bmatrix} = \begin{bmatrix} - 3 & 2 & 2\\ 2 & - 3 & 2\\ 2 & 2 & - 3 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{5}\begin{bmatrix} - 3 & 2 & 2\\ 2 & - 3 & 2\\ 2 & 2 & - 3 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
Find the matrix X for which
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
(a) 3
(b) 0
(c) − 3
(d) 1
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.