Advertisements
Advertisements
प्रश्न
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
उत्तर
\[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\]
\[\text{ Now, to find Adj . A}\]
\[A_{11} = \left( - 1 \right)^{1 + 1} \left( - 3 \right) = - 3\]
\[ A_{12} = \left( - 1 \right)^{1 + 2} \left( 6 \right) = - 6\]
\[ A_{13} = \left( - 1 \right)^{1 + 3} \left( - 6 \right) = - 6\]
\[ A_{21} = \left( - 1 \right)^{2 + 1} \left( - 6 \right) = 6\]
\[ A_{22} = \left( - 1 \right)^{2 + 2} \left( 3 \right) = 3 \]
\[ A_{23} = \left( - 1 \right)^{2 + 3} \left( 6 \right) = - 6\]
\[ A_{31} = \left( - 1 \right)^{3 + 1} \left( 6 \right) = 6\]
\[ A_{32} = \left( - 1 \right)^{3 + 2} \left( 6 \right) = - 6\]
\[ A_{33} = \left( - 1 \right)^{3 + 3} \left( 3 \right) = 3\]
Therefore,
\[Adj . A = \begin{bmatrix}- 3 & 6 & 6 \\ - 6 & 3 & - 6 \\ - 6 & - 6 & 3\end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{vmatrix}\]
\[ = - 1\left( 1 - 4 \right) - 2\left( - 2 - 4 \right) + 2\left( 4 + 2 \right)\]
\[ = 3 + 12 + 12\]
\[ = 27\]
\[\text{ To show: } A\left( adj A \right) = \left| A \right| I_3 \]
LHS =
\[\begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\begin{bmatrix}- 3 & 6 & 6 \\ - 6 & 3 & - 6 \\ - 6 & - 6 & 3\end{bmatrix}\]
\[ = \begin{bmatrix}3 + 12 + 12 & - 6 - 6 + 12 & - 6 + 12 - 6 \\ - 6 - 6 + 12 & 12 + 3 + 12 & 12 - 6 - 6 \\ - 6 + 12 - 6 & 12 - 6 - 6 & 12 + 12 + 3\end{bmatrix}\]
\[ = \begin{bmatrix}27 & 0 & 0 \\ 0 & 27 & 0 \\ 0 & 0 & 27\end{bmatrix}\]
\[ = 27 \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} \]
\[ = \left| A \right| I_3 \]
= RHS
\[\text{ Hence, }A\left( adj A \right) = \left| A \right| I_3 .\]
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
Show that
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If A is a singular matrix, then adj A is ______.
If A, B are two n × n non-singular matrices, then __________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A and B are invertible matrices, then which of the following is not correct?
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
|adj. A| = |A|2, where A is a square matrix of order two.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.