Advertisements
Advertisements
प्रश्न
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
उत्तर
Let:
\[A = \begin{bmatrix} 5 & 4 \\ 1 & 1 \end{bmatrix} \]
\[B = \begin{bmatrix} 1 &- 2\\1 & 3 \end{bmatrix}\]
Now,
\[\left| A \right| = \begin{bmatrix} 5 & 4 \\1 & 1 \end{bmatrix} = 5 - 4 = 1 \neq 0 \]
Hence, A is invertible .
\[\text{ If }C_{ij}\text{ is cofactor of }a_{ij} \text{ in A, then }C_{11} = 1, C_{12} = - 1, C_{21} = - 4\text{ and }C_{22} = 5 . \]
\[ \Rightarrow adj A = \begin{bmatrix} 1 & - 1\\ - 4 & - 5 \end{bmatrix}^T = \begin{bmatrix} 1 & - 4 \\ - 1 & 5 \end{bmatrix}\]
\[ \therefore A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix} 1 & - 4 \\ - 1 & 5 \end{bmatrix} \]
Now, the given equation becomes AX = B .
\[ \Rightarrow A^{- 1} \left( AX \right) = A^{- 1} \times B\]
\[ \Rightarrow \left( A^{- 1} A \right)X = A^{- 1} \times B\]
\[ \Rightarrow X = A^{- 1} \times B \]
\[ \Rightarrow X = \begin{bmatrix} 1 & - 4 \\ - 1 & 5 \end{bmatrix} \times \begin{bmatrix} 1 & - 2\\1 & 3 \end{bmatrix} \]
\[ \Rightarrow X = \begin{bmatrix} 1 - 4 & - 2 - 12\\ - 1 + 5 & 2 + 15 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} - 3 & - 14\\ 4 & 17 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
Show that
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the matrix X for which
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If A is an invertible matrix, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
(a) 3
(b) 0
(c) − 3
(d) 1
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
|adj. A| = |A|2, where A is a square matrix of order two.
If A, B be two square matrices such that |AB| = O, then ____________.
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)