Advertisements
Advertisements
प्रश्न
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
उत्तर
Let:
\[A = \begin{bmatrix} 5 & 4 \\ 1 & 1 \end{bmatrix} \]
\[B = \begin{bmatrix} 1 &- 2\\1 & 3 \end{bmatrix}\]
Now,
\[\left| A \right| = \begin{bmatrix} 5 & 4 \\1 & 1 \end{bmatrix} = 5 - 4 = 1 \neq 0 \]
Hence, A is invertible .
\[\text{ If }C_{ij}\text{ is cofactor of }a_{ij} \text{ in A, then }C_{11} = 1, C_{12} = - 1, C_{21} = - 4\text{ and }C_{22} = 5 . \]
\[ \Rightarrow adj A = \begin{bmatrix} 1 & - 1\\ - 4 & - 5 \end{bmatrix}^T = \begin{bmatrix} 1 & - 4 \\ - 1 & 5 \end{bmatrix}\]
\[ \therefore A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix} 1 & - 4 \\ - 1 & 5 \end{bmatrix} \]
Now, the given equation becomes AX = B .
\[ \Rightarrow A^{- 1} \left( AX \right) = A^{- 1} \times B\]
\[ \Rightarrow \left( A^{- 1} A \right)X = A^{- 1} \times B\]
\[ \Rightarrow X = A^{- 1} \times B \]
\[ \Rightarrow X = \begin{bmatrix} 1 & - 4 \\ - 1 & 5 \end{bmatrix} \times \begin{bmatrix} 1 & - 2\\1 & 3 \end{bmatrix} \]
\[ \Rightarrow X = \begin{bmatrix} 1 - 4 & - 2 - 12\\ - 1 + 5 & 2 + 15 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} - 3 & - 14\\ 4 & 17 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the matrix X satisfying the equation
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If A is a singular matrix, then adj A is ______.
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If A and B are invertible matrices, which of the following statement is not correct.
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
|adj. A| = |A|2, where A is a square matrix of order two.
A square matrix A is invertible if det A is equal to ____________.
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.