मराठी

If A is a singular matrix, then adj A is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a singular matrix, then adj A is ______.

पर्याय

  • non-singular

  • singular

  • symmetric

  • not defined

MCQ
रिकाम्या जागा भरा

उत्तर

If A is a singular matrix, then adj A is singular.

 A is singular, so |A|=0.

By definition, we have

A adj(A)=O

|Aadj(A)|=|O|

|A||adj(A)|=0

|adj(A)|=0

 Hence, adj(A) is singular.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.4 | Q 5 | पृष्ठ ३७

संबंधित प्रश्‍न

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.


Find the inverse of the matrices (if it exists).

[123024005]


Find the inverse of the matrices (if it exists).

[1000cosαsinα0sinα-cosα]


If A = [31-12] show that A2 – 5A + 7I = O. Hence, find A–1.


For the matrix A = [11112-32-13] show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If A = [2-11-12-11-12] verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


If A=[122212221] , show that adj A = 3AT.


Find the inverse of the following matrix:

[abc1+bca]

Find the inverse of the following matrix and verify that A1A=I3

[231341372]

If  A=[4325], find x and y such that 

A2=xA+yI=O . Hence, evaluate A−1.

If A=[3242], find the value of λ  so that A2=λA2I. Hence, find A−1.


Show that A=[5312] satisfies the equation x23x7=0. Thus, find A−1.


If A=[211121112].
Verify that A36A2+9A4I=O  and hence find A−1.

If A=19[814447184],
prove that  A1=A3

If A=[334234011] , show that A1=A3


If A=[120111010] , show that  A2=A1.


Solve the matrix equation [5411]X=[1213], where X is a 2 × 2 matrix.


 If A=[011101110], find A1 and show that A1=12(A23I).

Find the inverse by using elementary row transformations:

[7143]


Find the inverse by using elementary row transformations:

[1635]


Find the inverse by using elementary row transformations:

[334234011]


Find the inverse of the matrix [cosθsinθsinθcosθ]


If A=[abcd],B=[1001] , find adj (AB).


If A=[3123], then find |adj A|.


If A=[3424],B=[2201], then (A+B)1=


If S=[abcd], then adj A is ____________ .


If A=[a000a000a] , then the value of |adj A| is _____________ .


If for the matrix A, A3 = I, then A−1 = _____________ .


Let A=[1235] and B=[1002] and X be a matrix such that A = BX, then X is equal to _____________ .


If A=13[112212x2y] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


For what value of x, matrix [6-x43-x1] is a singular matrix?


For matrix A = [25-117] (adj A)' is equal to:


For A = [31-12], then 14A−1 is given by:


If |2x-142|=|3021| then x is ____________.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


If A = [0100], then A2023 is equal to ______.


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.