Advertisements
Advertisements
प्रश्न
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
उत्तर
\[A = \begin{bmatrix} 1 & 6\\ - 3 & 5 \end{bmatrix}\]
We know
\[A = IA\]
\[ \Rightarrow \begin{bmatrix} 1 & 6\\ - 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 6\\ - 3 + 3 & 5 + 18 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 + 3 & 1 + 0 \end{bmatrix}A [\text{ Applying }R_2 \to R_2 + 3 R_1 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 6\\ 0 & 23 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 3 & 1 \end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix} 1 & 6 - 6\\ 0 & 23 \end{bmatrix} = \begin{bmatrix} 1 - \frac{18}{23} & 0 - \frac{6}{23}\\ 3 & 1 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - \frac{6}{23} R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{23} & \frac{- 6}{23}\\ \frac{3}{23} & \frac{1}{23} \end{bmatrix}A [\text{ Applying }R_2 \to \frac{1}{23} R_2 ]\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} \frac{5}{23} & \frac{- 6}{23}\\ \frac{3}{23} & \frac{1}{23} \end{bmatrix} = \frac{1}{23}\begin{bmatrix} 5 & - 6\\ 3 & 1 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{23}\begin{bmatrix} 5 & - 6\\ 3 & 1 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
prove that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the matrix X for which
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A is a singular matrix, then adj A is ______.
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.