Advertisements
Advertisements
प्रश्न
Find the matrix X for which
उत्तर
\[Let A = \begin{bmatrix} 3 & 2\\7 & 5 \end{bmatrix}, B = \begin{bmatrix} - 1 & 1\\ - 2 & 1 \end{bmatrix} \text{ and }C = \begin{bmatrix} 2 & - 1\\0 & 4 \end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix} 3 & 2\\7 & 5 \end{vmatrix} = 15 - 14 = 1 \]
\[\left| B \right| = \begin{vmatrix} - 1 & 1\\ - 2 & 1 \end{vmatrix} = - 1 + 2 = 1 \]
\[\text{ Since, }\left| A \right| \neq 0\text{ and }\left| B \right| \neq 0\]
\[\text{ Hence, A & B are invertible, so }A^{- 1}\text{ and }B^{- 1}\text{ exist }. \]
Cofactors of matrix A are
\[ A_{11} = 5 A_{12} = - 7 A_{21} = - 2 A_{22} = 3 \]
Now,
\[adj A = \begin{bmatrix} 5 & - 7\\ - 2 & 3 \end{bmatrix}T = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix} \]
Cofactors of matrix B are
\[ B_{11} = 1 B_{12} = 2 B_{21} = - 1 B_{22} = - 1\]
Now,
\[adj B = \begin{bmatrix} 1 & 2\\ - 1 & - 1 \end{bmatrix}^T = \begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}adj B = \begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix} \]
The given equation becomes AXB = C
\[ \Rightarrow \left( A^{- 1} A \right)X\left( B B^{- 1} \right) = A^{- 1} C B^{- 1} \]
\[ \Rightarrow \left( I \right)X\left( I \right) = A^{- 1} C B^{- 1} \]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 2 & - 1\\0 & 4 \end{bmatrix}\begin{bmatrix} 1 & - 1\\ 2 & - 1 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 2 - 2 & - 2 + 1\\ 0 + 8 & 0 - 4 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 5 & - 2\\ - 7 & 3 \end{bmatrix}\begin{bmatrix} 0 & - 1\\ 8 & - 4 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} - 16 & 3\\ 24 & - 5 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
Show that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
|A–1| ≠ |A|–1, where A is non-singular matrix.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.