Advertisements
Advertisements
प्रश्न
Find the matrix X satisfying the equation
उत्तर
\[\text{ Let } A = \begin{bmatrix} 2 & 1\\5 & 3 \end{bmatrix} , B = \begin{bmatrix} 5 & 3\\3 & 2 \end{bmatrix}\text{ and }I = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}\]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 2 & 1\\5 & 3 \end{vmatrix} = 6 - 5 = 1 \]
\[\text{ Since, }\left| A \right| \neq 0\]
Thus, A is invertible.
\[\text{ Also, }\left| B \right| = \begin{vmatrix} 5 & 3\\3 & 2 \end{vmatrix} = 10 - 9 = 1\]
Thus, B is invertible.
Cofactors of matrices A & B are
\[ A_{11} = 3, A_{12} = - 5, A_{21} = - 1, A_{22} = 2\]
\[ B_{11} = 2, B_{12} = - 3, B_{21} = - 3, B_{22} = 5\]
Now,
\[adj A = \begin{bmatrix} 3 & - 5\\ - 1 & 2 \end{bmatrix}^T = \begin{bmatrix} 3 & - 1\\ - 5 & 2 \end{bmatrix} \]
\[adj B = \begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix}^T = \begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix} 3 & - 1\\ - 5 & 2 \end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}adj B = \begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix}\]
The given matrix equation becomes AXB = I
\[ \Rightarrow A^{- 1} AXB B^{- 1} = I A^{- 1} B^{- 1} \]
\[ \Rightarrow \left( A^{- 1} A \right)X\left( B B^{- 1} \right) = A^{- 1} B^{- 1} \]
\[ \Rightarrow IXI = A^{- 1} B^{- 1} \]
\[ \Rightarrow X = A^{- 1} B^{- 1} \]
\[ \Rightarrow X = \begin{bmatrix} 3 & -1\\ - 5 & 2\end{bmatrix}\begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix} = \begin{bmatrix} 6 + 3 & - 9 - 5\\ - 10 - 6 & 15 + 10 \end{bmatrix} = \begin{bmatrix} 9 & - 14\\ - 16 & 25 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
For the matrix
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A is a singular matrix, then adj A is ______.
If A, B are two n × n non-singular matrices, then __________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If A and B are invertible matrices, which of the following statement is not correct.
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
If A and B are invertible matrices, then which of the following is not correct?
|A–1| ≠ |A|–1, where A is non-singular matrix.
|adj. A| = |A|2, where A is a square matrix of order two.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.