English

Find the Matrix X Satisfying the Equation [ 2 1 5 3 ] X [ 5 3 3 2 ] = [ 1 0 0 1 ] - Mathematics

Advertisements
Advertisements

Question

Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]
Sum

Solution

\[\text{ Let } A = \begin{bmatrix} 2 & 1\\5 & 3 \end{bmatrix} , B = \begin{bmatrix} 5 & 3\\3 & 2 \end{bmatrix}\text{ and }I = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}\]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 2 & 1\\5 & 3 \end{vmatrix} = 6 - 5 = 1 \]
\[\text{ Since, }\left| A \right| \neq 0\]
Thus, A is invertible.
\[\text{ Also, }\left| B \right| = \begin{vmatrix} 5 & 3\\3 & 2 \end{vmatrix} = 10 - 9 = 1\]
Thus, B is invertible.
Cofactors of matrices A & B are
\[ A_{11} = 3, A_{12} = - 5, A_{21} = - 1, A_{22} = 2\]
\[ B_{11} = 2, B_{12} = - 3, B_{21} = - 3, B_{22} = 5\]
Now, 
\[adj A = \begin{bmatrix} 3 & - 5\\ - 1 & 2 \end{bmatrix}^T = \begin{bmatrix} 3 & - 1\\ - 5 & 2 \end{bmatrix} \]
\[adj B = \begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix}^T = \begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix} 3 & - 1\\ - 5 & 2 \end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}adj B = \begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix}\]
The given matrix equation becomes AXB = I
\[ \Rightarrow A^{- 1} AXB B^{- 1} = I A^{- 1} B^{- 1} \]
\[ \Rightarrow \left( A^{- 1} A \right)X\left( B B^{- 1} \right) = A^{- 1} B^{- 1} \]
\[ \Rightarrow IXI = A^{- 1} B^{- 1} \]
\[ \Rightarrow X = A^{- 1} B^{- 1} \]
\[ \Rightarrow X = \begin{bmatrix} 3 & -1\\ - 5 & 2\end{bmatrix}\begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix} = \begin{bmatrix} 6 + 3 & - 9 - 5\\ - 10 - 6 & 15 + 10 \end{bmatrix} = \begin{bmatrix} 9 & - 14\\ - 16 & 25 \end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 33 | Page 24

RELATED QUESTIONS

Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 0 & - 1 \\ 3 & 4 & 5 \\ - 2 & - 4 & - 7\end{bmatrix}\]

If  \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that 

\[A^2 = xA + yI = O\] . Hence, evaluate A−1.

Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.


If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\]  and hence show that \[A\left( adj A \right) = \left| A \right| I_3\]. 


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


If A is an invertible matrix of order 3, then which of the following is not true ?


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\]  be such that \[A^{- 1} = kA\], then k equals ___________ .


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


If A, B be two square matrices such that |AB| = O, then ____________.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


Read the following passage:

Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250.

Based on the above information, answer the following questions:

  1. Convert the given above situation into a matrix equation of the form AX = B. (1)
  2. Find | A |. (1)
  3. Find A–1. (2)
    OR
    Determine P = A2 – 5A. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×