Advertisements
Advertisements
Question
Find the matrix X satisfying the equation
Solution
\[\text{ Let } A = \begin{bmatrix} 2 & 1\\5 & 3 \end{bmatrix} , B = \begin{bmatrix} 5 & 3\\3 & 2 \end{bmatrix}\text{ and }I = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}\]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 2 & 1\\5 & 3 \end{vmatrix} = 6 - 5 = 1 \]
\[\text{ Since, }\left| A \right| \neq 0\]
Thus, A is invertible.
\[\text{ Also, }\left| B \right| = \begin{vmatrix} 5 & 3\\3 & 2 \end{vmatrix} = 10 - 9 = 1\]
Thus, B is invertible.
Cofactors of matrices A & B are
\[ A_{11} = 3, A_{12} = - 5, A_{21} = - 1, A_{22} = 2\]
\[ B_{11} = 2, B_{12} = - 3, B_{21} = - 3, B_{22} = 5\]
Now,
\[adj A = \begin{bmatrix} 3 & - 5\\ - 1 & 2 \end{bmatrix}^T = \begin{bmatrix} 3 & - 1\\ - 5 & 2 \end{bmatrix} \]
\[adj B = \begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix}^T = \begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A = \begin{bmatrix} 3 & - 1\\ - 5 & 2 \end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}adj B = \begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix}\]
The given matrix equation becomes AXB = I
\[ \Rightarrow A^{- 1} AXB B^{- 1} = I A^{- 1} B^{- 1} \]
\[ \Rightarrow \left( A^{- 1} A \right)X\left( B B^{- 1} \right) = A^{- 1} B^{- 1} \]
\[ \Rightarrow IXI = A^{- 1} B^{- 1} \]
\[ \Rightarrow X = A^{- 1} B^{- 1} \]
\[ \Rightarrow X = \begin{bmatrix} 3 & -1\\ - 5 & 2\end{bmatrix}\begin{bmatrix} 2 & - 3 \\ - 3 & 5 \end{bmatrix} = \begin{bmatrix} 6 + 3 & - 9 - 5\\ - 10 - 6 & 15 + 10 \end{bmatrix} = \begin{bmatrix} 9 & - 14\\ - 16 & 25 \end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Find the inverse of the following matrix.
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
If A is an invertible matrix, then det (A−1) is equal to ____________ .
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
If A, B be two square matrices such that |AB| = O, then ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)