Advertisements
Advertisements
Question
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Solution
\[A = \begin{bmatrix} 2 & 5\\1 & 3 \end{bmatrix}\]
We know
\[A = I A\]
\[ \Rightarrow \begin{bmatrix} 2 & 5\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 2 - 1 & 5 - 3\\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 - 0 & 0 - 1 \\ 0 & 1 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 2\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 2\\1 - 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 - 1 & 1 + 1 \end{bmatrix}A [\text{ Applying }R_2 \to R_2 - R_1 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 2\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & - 1 \\ - 1 & 2 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 2 & - 1 - 4 \\ - 1 & 2 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - 2 R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & - 5\\ - 1 & 2 \end{bmatrix}A\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} 3 & - 5\\ - 1 & 2 \end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
|A–1| ≠ |A|–1, where A is non-singular matrix.
A square matrix A is invertible if det A is equal to ____________.
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.