Advertisements
Advertisements
Question
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Solution 1
Given below is the square matrix. Here, we will interchange the diagonal elements and change the signs of the off-diagonal elements.
\[\ A = \begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
\[adjA = \begin{bmatrix}4 & - 5 \\ - 2 & - 3\end{bmatrix}\]
\[(adjA)A = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[\left| A \right| = - 22\]
\[\left| A \right|I = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[A(adjA) = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[ \therefore (adjA)A = \left| A \right|I = A(adjA)\]
Hence verified.
Solution 2
Given below is the square matrix. Here, we will interchange the diagonal elements and change the signs of the off-diagonal elements.
\[\ A = \begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
\[adjA = \begin{bmatrix}4 & - 5 \\ - 2 & - 3\end{bmatrix}\]
\[(adjA)A = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[\left| A \right| = - 22\]
\[\left| A \right|I = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[A(adjA) = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[ \therefore (adjA)A = \left| A \right|I = A(adjA)\]
Hence verified.
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If A is an invertible matrix of order 3, then which of the following is not true ?
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
|A–1| ≠ |A|–1, where A is non-singular matrix.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.