Advertisements
Advertisements
Question
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Solution
\[A = \begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix}0 & 1 & 2 \\ - 2 & 1 & 2 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & - 1 \\ 0 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 - R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ - 2 & 1 & 2 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ 0 & 1 & - 1 \\ 0 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 - R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ - 2 & 1 & 2 \\ 0 & 1 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ 0 & 1 & - 1 \\ 1 & 0 & 0\end{bmatrix} A \left[\text{ Applying }R_3 \to R_3 + R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ - 2 & 3 & - 1 \\ 1 & 0 & 0\end{bmatrix} A \left[\text{ Applying }R_2 \to 3 R_2 - 2 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & - 2 & - 2\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ - 2 & 3 & - 1 \\ 3 & - 3 & 1\end{bmatrix} A \left[\text{ Applying }R_3 \to R_3 - R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ - 2 & 3 & - 1 \\ \frac{- 3}{2} & \frac{3}{2} & \frac{- 1}{2}\end{bmatrix} A \left[\text{ Applying }R_3 \to - \frac{1}{2} R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & - 1 & 0 \\ 0 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ 4 & - 3 & 1 \\ \frac{- 3}{2} & \frac{3}{2} & \frac{- 1}{2}\end{bmatrix} A \left[ \text{ Applying }R_2 \to R_2 - 4 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & - 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ 4 & - 3 & 1 \\ \frac{5}{2} & \frac{- 3}{2} & \frac{1}{2}\end{bmatrix} A \left[ \text{ Applying }R_3 \to R_3 + R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}- \frac{3}{2} & \frac{3}{2} & - \frac{3}{2} \\ 4 & - 3 & 1 \\ \frac{5}{2} & \frac{- 3}{2} & \frac{1}{2}\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 - R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & \frac{- 1}{2} & \frac{1}{2} \\ 4 & - 3 & 1 \\ \frac{5}{2} & \frac{- 3}{2} & \frac{1}{2}\end{bmatrix} A \left[\text{ Applying }R_1 \to \frac{- 1}{3} R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & \frac{- 1}{2} & \frac{1}{2} \\ - 4 & 3 & - 1 \\ \frac{5}{2} & \frac{- 3}{2} & \frac{1}{2}\end{bmatrix} A \left[\text{ Applying }R_2 \to - R_2 \right]\]
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the matrix X for which
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
If A is an invertible matrix of order 3, then which of the following is not true ?
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
(a) 3
(b) 0
(c) − 3
(d) 1
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
If A and B are invertible matrices, then which of the following is not correct?
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)