Advertisements
Advertisements
Question
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Solution
\[A = \begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix}1 & \frac{3}{2} & \frac{1}{2} \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_1 \to \frac{1}{2} R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & \frac{3}{2} & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & \frac{5}{2} & \frac{1}{2}\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & 0 & 0 \\ - 1 & 1 & 0 \\ \frac{- 3}{2} & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 - 2 R_1\text{ and }R_3 \to R_3 - 3 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2}\end{bmatrix} = \begin{bmatrix}2 & \frac{- 3}{2} & 0 \\ - 1 & 1 & 0 \\ 1 & \frac{- 5}{2} & 1\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 - \frac{3}{2} R_2\text{ and }R_3 \to R_3 - \frac{5}{2} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}2 & \frac{- 3}{2} & 0 \\ - 1 & 1 & 0 \\ 2 & - 5 & 2\end{bmatrix}A \left[\text{ Applying }R_3 \to 2 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & 1 & - 1 \\ - 1 & 1 & 0 \\ 2 & - 5 & 2\end{bmatrix}A \left[\text{ Applying }R_1 \to R_1 - \frac{1}{2} R_3 \right]\]
\[ \therefore A^{- 1} = \begin{bmatrix}1 & 1 & - 1 \\ - 1 & 1 & 0 \\ 2 & - 5 & 2\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Show that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If A and B are invertible matrices, which of the following statement is not correct.
(a) 3
(b) 0
(c) − 3
(d) 1
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
|adj. A| = |A|2, where A is a square matrix of order two.
If A, B be two square matrices such that |AB| = O, then ____________.
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.