Advertisements
Advertisements
Question
Solution
We know that (AB)−1 = B−1 A−1.
\[B = \begin{bmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}Adj . B\]
Now,
\[\left| B \right| = \begin{vmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{vmatrix}\]
\[ = 1\left( 3 + 0 \right) + 1\left( 2 - 4 \right)\]
\[ = 1\]
\[\text{ Now, to find Adj . B}\]
\[B_{11} = \left( - 1 \right)^{1 + 1} \left( 3 \right) = 3\]
\[ B_{12} = \left( - 1 \right)^{1 + 2} \left( - 1 \right) = 1\]
\[ B_{13} = \left( - 1 \right)^{1 + 3} \left( 2 \right) = 2\]
\[B_{21} = \left( - 1 \right)^{2 + 1} \left( 2 - 4 \right) = 2\]
\[ B_{22} = \left( - 1 \right)^{2 + 2} \left( 1 \right) = 1 \]
\[ B_{23} = \left( - 1 \right)^{2 + 3} \left( - 2 \right) = 2\]
\[B_{31} = \left( - 1 \right)^{3 + 1} \left( 6 \right) = 6\]
\[ B_{32} = \left( - 1 \right)^{3 + 2} \left( - 2 \right) = 2\]
\[ B_{33} = \left( - 1 \right)^{3 + 3} \left( 3 + 2 \right) = 5\]
Therefore,
\[Adj . B = \begin{bmatrix}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{bmatrix}\]
Thus,
\[ B^{- 1} = \begin{bmatrix}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{bmatrix} . \]
\[ \left( AB \right)^{- 1} = B^{- 1} A^{- 1} \]
\[ = \begin{bmatrix}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{bmatrix}\begin{bmatrix}3 & - 1 & 1 \\ - 15 & 6 & - 5 \\ 5 & - 2 & 2\end{bmatrix}\]
\[ = \begin{bmatrix}9 - 30 + 30 & - 3 + 12 - 12 & 3 - 10 + 12 \\ 3 - 15 + 10 & - 1 + 6 - 4 & 1 - 5 + 4 \\ 6 - 30 + 25 & - 2 + 12 - 10 & 2 - 10 + 10\end{bmatrix}\]
\[ = \begin{bmatrix}9 & - 3 & 5 \\ - 2 & 1 & 0 \\ 1 & 0 & 2\end{bmatrix}\]
\[\text{ Hence,} \left( AB \right)^{- 1} = \begin{bmatrix}9 & - 3 & 5 \\ - 2 & 1 & 0 \\ 1 & 0 & 2\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
Show that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A, B are two n × n non-singular matrices, then __________ .
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If A is an invertible matrix, then det (A−1) is equal to ____________ .
|A–1| ≠ |A|–1, where A is non-singular matrix.
If A, B be two square matrices such that |AB| = O, then ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.