Advertisements
Advertisements
Question
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
Solution
(i) \[ F(\alpha) = \begin{bmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow F( - \alpha) = \begin{bmatrix}\cos\left( - \alpha \right) & - \sin\left( - \alpha \right) & 0 \\ \sin\left( - \alpha \right) & \cos\left( - \alpha \right) & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[Now, \]
\[ C_{11} = \begin{vmatrix}\cos\alpha & 0 \\ 0 & 1\end{vmatrix} = \cos\alpha, C_{12} = - \begin{vmatrix}\sin\alpha & 0 \\ 0 & 1\end{vmatrix} = - \sin\alpha\text{ and }C_{13} = \begin{vmatrix}\sin\alpha & \cos\alpha \\ 0 & 0\end{vmatrix} = 0\]
\[ C_{21} = - \begin{vmatrix}- \sin\alpha & 0 \\ 0 & 1\end{vmatrix} = \sin\alpha, C_{22} = \begin{vmatrix}\cos\alpha & 0 \\ 0 & 1\end{vmatrix} = \cos\alpha\text{ and }C_{23} = - \begin{vmatrix}\cos\alpha & - \sin\alpha \\ 0 & 0\end{vmatrix} = 0\]
\[ C_{31} = \begin{vmatrix}- \sin\alpha & 0 \\ \cos\alpha & 0\end{vmatrix} = 0, C_{32} = - \begin{vmatrix}\cos\alpha & 0 \\ \sin\alpha & 0\end{vmatrix} = 0\text{ and }C_{33} = \begin{vmatrix}\cos\alpha & - \sin\alpha \\ \sin\alpha & \cos\alpha\end{vmatrix} = 1\]
\[ \Rightarrow adj\left\{ F(\alpha) \right\} = \begin{bmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}^T = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow \left| F(\alpha) \right| = 1\]
\[ \therefore \left[ F\left( \alpha \right) \right]^{- 1} = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix} . . . \left( 1 \right)\]
\[ \Rightarrow \left[ F\left( \alpha \right) \right]^{- 1} = F( - \alpha) \]
(ii) \[ G(\beta) = \begin{bmatrix}\cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ - \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[ \Rightarrow G( - \beta) = \begin{bmatrix}\cos\left( - \beta \right) & 0 & \sin\left( - \beta \right) \\ 0 & 1 & 0 \\ - \sin\left( - \beta \right) & 0 & \cos\left( - \beta \right)\end{bmatrix} = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[Now, \]
\[ C_{11} = \begin{vmatrix}1 & 0 \\ 0 & \cos\beta\end{vmatrix} = \cos\beta, C_{12} = - \begin{vmatrix}0 & 0 \\ - \sin\beta & \cos\beta\end{vmatrix} = 0\text{ and }C_{13} = \begin{vmatrix}0 & 1 \\ - \sin\beta & 0\end{vmatrix} = \sin\beta\]
\[ C_{21} = - \begin{vmatrix}0 & \sin\beta \\ 0 & \cos\beta\end{vmatrix} = 0, C_{22} = \begin{vmatrix}\cos\beta & \sin\beta \\ - \sin\beta & \cos\beta\end{vmatrix} = 1\text{ and }C_{23} = - \begin{vmatrix}\cos\beta & 0 \\ - \sin\beta & 0\end{vmatrix} = 0\]
\[ C_{31} = \begin{vmatrix}0 & \sin\beta \\ 1 & 0\end{vmatrix} = - \sin\beta, C_{32} = - \begin{vmatrix}\cos\beta & \sin\beta \\ 0 & 0\end{vmatrix} = 0\text{ and }C_{33} = \begin{vmatrix}\cos\beta & 0 \\ 0 & 1\end{vmatrix} = \cos\beta\]
\[adj\left\{ G(\beta) \right\} = \begin{bmatrix}\cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ - \sin\beta & 0 & \cos\beta\end{bmatrix}^T = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[\left| G(\beta) \right| = 1\]
\[ \therefore G(\beta )^{- 1} = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix} . . . \left( 2 \right) \]
\[ \Rightarrow G(\beta )^{- 1} = = G( - \beta) \]
(iii) \[ F(\alpha) = \begin{bmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow F( - \alpha) = \begin{bmatrix}\cos\left( - \alpha \right) & - \sin\left( - \alpha \right) & 0 \\ \sin\left( - \alpha \right) & \cos\left( - \alpha \right) & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix} . . . \left( 3 \right)\]
\[G(\beta) = \begin{bmatrix}\cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ - \sin\beta & 0 & \cos\beta\end{bmatrix}\]
\[ \Rightarrow G( - \beta) = \begin{bmatrix}\cos\left( - \beta \right) & 0 & \sin\left( - \beta \right) \\ 0 & 1 & 0 \\ - \sin\left( - \beta \right) & 0 & \cos\left( - \beta \right)\end{bmatrix} = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix} . . . \left( 4 \right)\]
\[ \left[ F(\alpha)G(\beta) \right]^{- 1} = \left[ G(\beta) \right]^{- 1} \left[ F(\alpha) \right]^{- 1} \]
\[ = \begin{bmatrix}\cos\beta & 0 & - \sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta\end{bmatrix}\begin{bmatrix}\cos\alpha & \sin\alpha & 0 \\ - \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{bmatrix} \] [Using equation (1) and (2)]
\[ = G( - \beta)F( - \alpha) \] [Using equatio (3) and (4)]
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If A is an invertible matrix, then which of the following is not true ?
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If A is a singular matrix, then adj A is ______.
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
|adj. A| = |A|2, where A is a square matrix of order two.
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.