Advertisements
Advertisements
Question
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Solution
\[A = \begin{bmatrix} 1 & 6\\ - 3 & 5 \end{bmatrix}\]
We know
\[A = IA\]
\[ \Rightarrow \begin{bmatrix} 1 & 6\\ - 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 6\\ - 3 + 3 & 5 + 18 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 + 3 & 1 + 0 \end{bmatrix}A [\text{ Applying }R_2 \to R_2 + 3 R_1 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 6\\ 0 & 23 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 3 & 1 \end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix} 1 & 6 - 6\\ 0 & 23 \end{bmatrix} = \begin{bmatrix} 1 - \frac{18}{23} & 0 - \frac{6}{23}\\ 3 & 1 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - \frac{6}{23} R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{23} & \frac{- 6}{23}\\ \frac{3}{23} & \frac{1}{23} \end{bmatrix}A [\text{ Applying }R_2 \to \frac{1}{23} R_2 ]\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} \frac{5}{23} & \frac{- 6}{23}\\ \frac{3}{23} & \frac{1}{23} \end{bmatrix} = \frac{1}{23}\begin{bmatrix} 5 & - 6\\ 3 & 1 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{23}\begin{bmatrix} 5 & - 6\\ 3 & 1 \end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
prove that \[A^{- 1} = A^3\]
Find the matrix X satisfying the equation
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)