Advertisements
Advertisements
Question
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Solution
\[B = \begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}3 & 1 \\ 1 & 1\end{vmatrix} = 2, C_{12} = - \begin{vmatrix}2 & 1 \\ - 1 & 1\end{vmatrix} = - 3\text{ and } C_{13} = \begin{vmatrix}2 & 3 \\ - 1 & 1\end{vmatrix} = 5\]
\[ C_{21} = - \begin{vmatrix}2 & 5 \\ 1 & 1\end{vmatrix} = 3, C_{22} = \begin{vmatrix}1 & 5 \\ - 1 & 1\end{vmatrix} = 6\text{ and }C_{23} = - \begin{vmatrix}1 & 2 \\ - 1 & 1\end{vmatrix} = - 3\]
\[ C_{31} = \begin{vmatrix}2 & 5 \\ 3 & 1\end{vmatrix} = - 13, C_{32} = - \begin{vmatrix}1 & 5 \\ 2 & 1\end{vmatrix} = 9\text{ and }C_{33} = \begin{vmatrix}1 & 2 \\ 2 & 3\end{vmatrix} = - 1\]
\[ \therefore adjB = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 6 & - 3 \\ - 13 & 9 & - 1\end{bmatrix}^T = \begin{bmatrix}2 & 3 & - 13 \\ - 3 & 6 & 9 \\ 5 & - 3 & - 1\end{bmatrix}\]
\[(adjB)B = \begin{bmatrix}21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21\end{bmatrix}\]
\[\text{ and }\left| B \right| = 21\]
\[ \therefore \left| B \right|I = \begin{bmatrix}21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21\end{bmatrix}\]
\[\text{ and }B(adjB) = \begin{bmatrix}21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21\end{bmatrix}\]
\[\text{ Thus, }(adjA)A = \left| A \right|I = A(adjA)\]
APPEARS IN
RELATED QUESTIONS
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
prove that \[A^{- 1} = A^3\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
If A, B be two square matrices such that |AB| = O, then ____________.
A square matrix A is invertible if det A is equal to ____________.
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.