Advertisements
Advertisements
Question
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Solution
\[\text{ We have, }A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
\[ \therefore AB = \begin{bmatrix}18 & 22 \\ 43 & 52\end{bmatrix}\]
\[\left| AB \right| = - 10\]
\[\text{Since, }\left| AB \right| \neq 0\]
\[\text{Hence, AB is invertible . Let } C_{ij}\text{ be the cofactor of }a_{in}\text{ in AB = }\left[ a_{ij} \right]\]
\[ C_{11} = 52 , C_{12} = - 43, C_{21} = - 22\text{ and }C_{22} = 18\]
\[adj\left( AB \right) = \begin{bmatrix}52 & - 43 \\ - 22 & 18\end{bmatrix}^T = \begin{bmatrix}52 & - 22 \\ - 43 & 18\end{bmatrix}\]
\[ \therefore \left( AB \right)^{- 1} = - \frac{1}{10}\begin{bmatrix}52 & - 22 \\ - 43 & 18\end{bmatrix} . . . \left( 1 \right)\]
\[\text{ Now, }B = \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
\[\left| B \right| = - 10\]
\[\text{ Since, }\left| B \right| \neq 0\]
\[\text{Hence, B is invertible . Let }C_{ij}\text{ be the cofactor of } a_{in}\text{ in B = }\left[ a_{ij} \right]\]
\[ C_{11} = 2 , C_{12} = - 3, C_{21} = - 6\text{ and }C_{22} = 4\]
\[adjB = \begin{bmatrix}2 & - 3 \\ - 6 & 4\end{bmatrix}^T = \begin{bmatrix}2 & - 6 \\ - 3 & 4\end{bmatrix}\]
\[ \therefore B^{- 1} = - \frac{1}{10}\begin{bmatrix}2 & - 6 \\ - 3 & 4\end{bmatrix}\]
\[\left| A \right| = 1\]
\[\text{Since, }\left| A \right| \neq 0\]
\[\text{ Hence, A is invertible . Let }C_{ij}\text{ be the cofactor of } a_{in}\text{ in A = }\left[ a_{ij} \right]\]
\[ C_{11} = 5 , C_{12} = - 7, C_{21} = - 2\text{ and }C_{22} = 3\]
\[adjA = \begin{bmatrix}5 & - 7 \\ - 2 & 3\end{bmatrix}^T = \begin{bmatrix}5 & - 2 \\ - 7 & 3\end{bmatrix}\]
\[ \therefore A^{- 1} = \begin{bmatrix}5 & - 2 \\ - 7 & 3\end{bmatrix}\]
\[\text{ Now, }B^{- 1} A^{- 1} = - \frac{1}{10}\begin{bmatrix}52 & - 22 \\ - 43 & 18\end{bmatrix} . . . \left( 2 \right)\]
\[\text{From eq . }\left( 1 \right)\text{ and }\left( 2 \right),\text{ we have}\]
\[ \left( AB \right)^{- 1} = B^{- 1} A^{- 1} \]
Hence verified .
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.
Find the inverse of the following matrix:
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A is a singular matrix, then adj A is ______.
If A is an invertible matrix, then det (A−1) is equal to ____________ .
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A and B are invertible matrices, then which of the following is not correct?
|adj. A| = |A|2, where A is a square matrix of order two.
If A, B be two square matrices such that |AB| = O, then ____________.
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.