Advertisements
Advertisements
Question
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
Solution
We have,
\[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}\]
\[ B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]
\[\text{ We know }(AB )^{- 1} = B^{- 1} A^{- 1} \]
For matrix A,
\[ C_{11} = \begin{vmatrix}3 & 2 \\ 2 & 1\end{vmatrix} = - 1, C_{12} = - \begin{vmatrix}2 & 2 \\ 1 & 1\end{vmatrix} = 0\text{ and }C_{13} = \begin{vmatrix}2 & 3 \\ 1 & 2\end{vmatrix} = 1\]
\[ C_{21} = - \begin{vmatrix}0 & 4 \\ 2 & 1\end{vmatrix} = 8, C_{22} = \begin{vmatrix}5 & 4 \\ 1 & 1\end{vmatrix} = 1\text{ and }C_{23} = - \begin{vmatrix}5 & 0 \\ 1 & 2\end{vmatrix} = - 10\]
\[ C_{31} = \begin{vmatrix}0 & 4 \\ 3 & 2\end{vmatrix} = - 12, C_{32} = - \begin{vmatrix}5 & 4 \\ 2 & 2\end{vmatrix} = - 2\text{ and }C_{33} = \begin{vmatrix}5 & 0 \\ 2 & 3\end{vmatrix} = 15\]
Now,
\[adj (A) = \begin{bmatrix}- 1 & 0 & 1 \\ 8 & 1 & - 10 \\ - 12 & - 2 & 15\end{bmatrix}^T = \begin{bmatrix}- 1 & 8 & - 12 \\ 0 & 1 & - 2 \\ 1 & - 10 & 15\end{bmatrix}\]
\[\text{ and }\left| A \right| = - 1\]
\[ \therefore A^{- 1} = - \begin{bmatrix}- 1 & 8 & - 12 \\ 0 & 1 & - 2 \\ 1 & - 10 & 15\end{bmatrix} = \begin{bmatrix}1 & - 8 & 12 \\ 0 & - 1 & 2 \\ - 1 & 10 & - 15\end{bmatrix}\]
\[So, B^{- 1} A^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\begin{bmatrix}1 & - 8 & 12 \\ 0 & - 1 & 2 \\ - 1 & 10 & - 15\end{bmatrix} = \begin{bmatrix}- 2 & 19 & - 27 \\ - 2 & 18 & - 25 \\ - 3 & 29 & - 42\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
If A, B be two square matrices such that |AB| = O, then ____________.
A square matrix A is invertible if det A is equal to ____________.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.