English

Find the Inverse of the Following Matrix. ⎡ ⎢ ⎣ 0 1 − 1 4 − 3 4 3 − 3 4 ⎤ ⎥ ⎦ - Mathematics

Advertisements
Advertisements

Question

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

Solution

\[ E = \begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}- 3 & 4 \\ - 3 & 4\end{vmatrix} = 0, C_{12} = - \begin{vmatrix}4 & 4 \\ 3 & 4\end{vmatrix} = - 4\text{ and }C_{13} = \begin{vmatrix}4 & - 3 \\ 3 & - 3\end{vmatrix} = - 3\]
\[ C_{21} = - \begin{vmatrix}1 & - 1 \\ - 3 & 4\end{vmatrix} = - 1, C_{22} = \begin{vmatrix}0 & - 1 \\ 3 & 4\end{vmatrix} = 3\text{ and }C_{23} = - \begin{vmatrix}0 & 1 \\ 3 & - 3\end{vmatrix} = 3\]
\[ C_{31} = \begin{vmatrix}1 & - 1 \\ - 3 & 4\end{vmatrix} = 1, C_{32} = - \begin{vmatrix}0 & - 1 \\ 4 & 4\end{vmatrix} = - 4\text{ and }C_{33} = \begin{vmatrix}0 & 1 \\ 4 & - 3\end{vmatrix} = - 4\]
\[adjE = \begin{bmatrix}0 & - 4 & - 3 \\ - 1 & 3 & 3 \\ 1 & - 4 & - 4\end{bmatrix}^T = \begin{bmatrix}0 & - 1 & 1 \\ - 4 & 3 & - 4 \\ - 3 & 3 & - 4\end{bmatrix}\]
\[and \left| E \right| = - 1\]
\[ \therefore E^{- 1} = - 1\begin{bmatrix}0 & - 1 & 1 \\ - 4 & 3 & - 4 \\ - 3 & 3 & - 4\end{bmatrix} = \begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 8.5 | Page 23

RELATED QUESTIONS

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.


Find the inverse of the matrices (if it exists).

`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]


Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]


Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If A, B are two n × n non-singular matrices, then __________ .


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


If A and B are invertible matrices, then which of the following is not correct?


(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


A square matrix A is invertible if det A is equal to ____________.


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.


Read the following passage:

Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250.

Based on the above information, answer the following questions:

  1. Convert the given above situation into a matrix equation of the form AX = B. (1)
  2. Find | A |. (1)
  3. Find A–1. (2)
    OR
    Determine P = A2 – 5A. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×