English

If x, y, z are nonzero real numbers, then the inverse of matrix A = [x000y000z] is ______. - Mathematics

Advertisements
Advertisements

Question

If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.

Options

  • `[(x^(-1),0,0),(0, y^(-1),0),(0,0,z^(-1))]`

  • `xyz[(x^(-1),0,0),(0,y^(-1),0),(0,0,z^(-1))]`

  • `1/xyz[(x,0,0),(0,y,0),(0,0,z)]`

  • `1/xyz [(1,0,0),(0,1,0),(0,0,1)]`

MCQ
Fill in the Blanks

Solution

If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is `underline([(x^(-1),0,0),(0, y^(-1),0),(0,0,z^(-1))]).`

Explnation:

Let, A = `[(x,0,0),(0,y,0),(0,0,z)]`

∴ |A| = x[yz - 0] = xyz

∴ `A_11 = (-1)^{1 + 1}[(y,0),(0,z)] = (-1)^2[yz - 0]`

= 1 × yz = yz

`A_12 = (-1)^{1 + 2}[(0,0),(0,z)] = (-1)^3[0 - 0] = 0`

`A_13 = (-1)^{1 + 3}[(0,y),(0,0)] = (-1)^4[0 - 0] = 0`

`A_21 = (-1)^{2 + 1}[(0,0),(0,z)] = (-1)^3[0 - 0] = 0`

`A_22 = (-1)^{2 + 2}[(x,0),(0,z)] = (-1)^4[xz - 0] = 0`

= 1 × zx = zx

`A_23 = (-1)^{2 + 3}[(x,0),(0,0)] = (-1)^5[0 - 0] = 0`

`A_31 = (-1)^{3 + 1}[(0,0),(0,z)] = (-1)^4[0 - 0] = 0`

`A_32 = (-1)^{3 + 2}[(x,0),(0,0)] = (-1)^5[0 - 0] = 0`

`A_33 = (-1)^{3 + 3}[(x,0),(0,y)] = (-1)^6[xy - 0] = xy`

∴ adj A = `[(yz,0,0),(0,zx,0),(0,0,xy)] = [(yz,0,0),(0,zx,0),(0,0,xy)]`

`A^-1 = 1/|A|(adj A) = 1/(xyz)[(yz,0,0),(0,zx,0),(0,0,xy)]`

= `[(1/x,0,0),(0,1/y,0),(0,0,1/z)] = [(x^-1,0,0),(0,y^-1,0),(0,0,z^-1)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise 4.7 [Page 143]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 4 Determinants
Exercise 4.7 | Q 18 | Page 143

RELATED QUESTIONS

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.


Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


Verify A (adj A) = (adj A) A = |A|I.

`[(2,3),(-4,-6)]`


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]`  find  `(AB)^(-1)`


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix:

\[\begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]

Find the inverse of the following matrix:

\[\begin{bmatrix}2 & 5 \\ - 3 & 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]

For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.


A square matrix A is invertible if det A is equal to ____________.


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos"  2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.


If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3


If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×