हिंदी

If x, y, z are nonzero real numbers, then the inverse of matrix A = [x000y000z] is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.

विकल्प

  • `[(x^(-1),0,0),(0, y^(-1),0),(0,0,z^(-1))]`

  • `xyz[(x^(-1),0,0),(0,y^(-1),0),(0,0,z^(-1))]`

  • `1/xyz[(x,0,0),(0,y,0),(0,0,z)]`

  • `1/xyz [(1,0,0),(0,1,0),(0,0,1)]`

MCQ
रिक्त स्थान भरें

उत्तर

If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is `underline([(x^(-1),0,0),(0, y^(-1),0),(0,0,z^(-1))]).`

Explnation:

Let, A = `[(x,0,0),(0,y,0),(0,0,z)]`

∴ |A| = x[yz - 0] = xyz

∴ `A_11 = (-1)^{1 + 1}[(y,0),(0,z)] = (-1)^2[yz - 0]`

= 1 × yz = yz

`A_12 = (-1)^{1 + 2}[(0,0),(0,z)] = (-1)^3[0 - 0] = 0`

`A_13 = (-1)^{1 + 3}[(0,y),(0,0)] = (-1)^4[0 - 0] = 0`

`A_21 = (-1)^{2 + 1}[(0,0),(0,z)] = (-1)^3[0 - 0] = 0`

`A_22 = (-1)^{2 + 2}[(x,0),(0,z)] = (-1)^4[xz - 0] = 0`

= 1 × zx = zx

`A_23 = (-1)^{2 + 3}[(x,0),(0,0)] = (-1)^5[0 - 0] = 0`

`A_31 = (-1)^{3 + 1}[(0,0),(0,z)] = (-1)^4[0 - 0] = 0`

`A_32 = (-1)^{3 + 2}[(x,0),(0,0)] = (-1)^5[0 - 0] = 0`

`A_33 = (-1)^{3 + 3}[(x,0),(0,y)] = (-1)^6[xy - 0] = xy`

∴ adj A = `[(yz,0,0),(0,zx,0),(0,0,xy)] = [(yz,0,0),(0,zx,0),(0,0,xy)]`

`A^-1 = 1/|A|(adj A) = 1/(xyz)[(yz,0,0),(0,zx,0),(0,0,xy)]`

= `[(1/x,0,0),(0,1/y,0),(0,0,1/z)] = [(x^-1,0,0),(0,y^-1,0),(0,0,z^-1)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise 4.7 [पृष्ठ १४३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise 4.7 | Q 18 | पृष्ठ १४३

संबंधित प्रश्न

Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the inverse of the following matrix:

\[\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

Find the inverse of the following matrix:

\[\begin{bmatrix}2 & 5 \\ - 3 & 1\end{bmatrix}\]

Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]


Find the inverse of the following matrix.

\[\begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


If  \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that 

\[A^2 = xA + yI = O\] . Hence, evaluate A−1.

Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]


If A is a singular matrix, then adj A is ______.


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


|A–1| ≠ |A|–1, where A is non-singular matrix.


If A, B be two square matrices such that |AB| = O, then ____________.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.


Read the following passage:

Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250.

Based on the above information, answer the following questions:

  1. Convert the given above situation into a matrix equation of the form AX = B. (1)
  2. Find | A |. (1)
  3. Find A–1. (2)
    OR
    Determine P = A2 – 5A. (2)

Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×