Advertisements
Advertisements
प्रश्न
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
उत्तर
\[A = \begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}3 & 1 \\ 1 & 2\end{vmatrix} = 5, C_{12} = - \begin{vmatrix}2 & 1 \\ 3 & 2\end{vmatrix} = - 1\text{ and }C_{13} = \begin{vmatrix}2 & 3 \\ 3 & 1\end{vmatrix} = - 7\]
\[ C_{21} = - \begin{vmatrix}2 & 3 \\ 1 & 2\end{vmatrix} = - 1, C_{22} = \begin{vmatrix}1 & 3 \\ 3 & 2\end{vmatrix} = - 7\text{ and }C_{23} = - \begin{vmatrix}1 & 2 \\ 3 & 1\end{vmatrix} = 5\]
\[ C_{31} = \begin{vmatrix}2 & 3 \\ 3 & 1\end{vmatrix} = - 7, C_{32} = - \begin{vmatrix}1 & 3 \\ 2 & 1\end{vmatrix} = 5\text{ and }C_{33} = \begin{vmatrix}1 & 2 \\ 2 & 3\end{vmatrix} = - 1\]
\[adjA = \begin{bmatrix}5 & - 1 & - 7 \\ - 1 & - 7 & 5 \\ - 7 & 5 & - 1\end{bmatrix}^T = \begin{bmatrix}5 & - 1 & - 7 \\ - 1 & - 7 & 5 \\ - 7 & 5 & - 1\end{bmatrix}\]
\[\text{ and }\left| A \right| = - 18\]
\[ \therefore A^{- 1} = - \frac{1}{18}\begin{bmatrix}5 & - 1 & - 7 \\ - 1 & - 7 & 5 \\ - 7 & 5 & - 1\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find the inverse of the following matrix:
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
prove that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If A is an invertible matrix, then which of the following is not true ?
If A, B are two n × n non-singular matrices, then __________ .
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.