हिंदी

Find the Matrix X Satisfying the Matrix Equation X [ 5 3 − 1 − 2 ] = [ 14 7 7 7 ] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]

उत्तर

Let: 
\[A = \begin{bmatrix} 5 & 3\\ - 1 & - 2 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 5 & 3\\ - 1 & - 2 \end{vmatrix} = - 10 + 3 = - 7 \neq 0 \]
Hence, A is invertible .
\[\text{ If }C_{ij}\text{ is a cofactor of }a_{ij}\text{ in A, then }C_{11} = - 2, C_{12} = 1, C_{21} = - 3\text{ and }C_{22} = 5 . \]
Now, 
\[adj A = \begin{bmatrix} - 2 & 1\\ - 3 & 5 \end{bmatrix}^T = \begin{bmatrix} - 2 & - 3\\ 1 & 5 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A = \frac{- 1}{7}\begin{bmatrix} - 2 & - 3\\ 1 & 5 \end{bmatrix} \]
Let:
\[B = \begin{bmatrix} 14 & 7\\7 & 7 \end{bmatrix}\]
\[ \Rightarrow \left| B \right| = \begin{bmatrix} 14 & 7\\7 & 7 \end{bmatrix} = 98 - 49 = 49 \neq 0 \]
Hence, B is invertible .
The given matrix equation becomes XA = B . 
\[ \Rightarrow \left( XA \right) A^{- 1} = B A^{- 1} \]
\[ \Rightarrow X\left( A A^{- 1} \right) = \begin{bmatrix} 14 & 7\\7 & 7 \end{bmatrix} \times \frac{- 1}{7} \times \begin{bmatrix} - 2 & - 3\\ 1 & 5 \end{bmatrix}\]
\[ \Rightarrow X = \frac{- 1}{7}\begin{bmatrix} - 28 + 7 & - 42 + 35\\ - 14 + 7 & - 21 + 35 \end{bmatrix}\]
\[ \Rightarrow X = \frac{- 1}{7}\begin{bmatrix} - 21 & - 7\\ - 7 & 14 \end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix} 3 & 1\\ 1 & - 2 \end{bmatrix}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 31 | पृष्ठ २४

संबंधित प्रश्न

Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Verify A (adj A) = (adj A) A = |A|I.

`[(1,-1,2),(3,0,-2),(1,0,3)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(3,3,0),(5,2,-1)]`


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If A is a singular matrix, then adj A is ______.


If A, B are two n × n non-singular matrices, then __________ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


If A, B be two square matrices such that |AB| = O, then ____________.


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×