Advertisements
Advertisements
प्रश्न
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.
विकल्प
–26
+4
–28
28
उत्तर
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to 28.
Explanation:
|adj(2A)| = |(2A)|2
= (23 |A|)2
= 26 |A|2
= 26 × (–2)2
= 28.
APPEARS IN
संबंधित प्रश्न
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
Show that
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
If A is an invertible matrix, then which of the following is not true ?
If A is an invertible matrix of order 3, then which of the following is not true ?
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
|adj. A| = |A|2, where A is a square matrix of order two.