Advertisements
Advertisements
प्रश्न
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
उत्तर
\[A = \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 &- 1& 3 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{vmatrix} = \left( 1 \times 3 \right) - \left( 1 \times 9 \right) + \left( 1 \times - 5 \right) = 3 - 9 - 5 = - 11 \]
\[\text{ Since, }\left| A \right| \neq 0\]
\[\text{Hence, }A^{- 1}\text{ exists . }\]
Now,
\[ A^2 = \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 &- 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 + 1 + 2 & 1 + 2 - 1 & 1 - 3 + 3\\1 + 2 - 6 & 1 + 4 + 3 & 1 - 6 - 9\\2 - 1 + 6 & 2 - 2 - 3 & 2 + 3 + 9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 & - 14\\ 7 & - 3 & 14 \end{bmatrix}\]
\[\text{ and }A^3 = A^2 . A = \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 & - 14\\7 & - 3 & 14 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 + 2 + 2 & 4 + 4 - 1 & 4 - 6 + 3\\ - 3 + 8 - 28 & - 3 + 16 + 14 & - 3 - 24 - 42\\ 7 - 3 + 28 & 7 - 6 - 14 & 7 + 9 + 42 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 1\\ - 23 & 27 & - 69\\ 32 & - 13 & 58 \end{bmatrix}\]
\[\text{ Now, }A^3 - 6 A^2 + 5A + 11 I_3 = \begin{bmatrix} 8 & 7 & 1 \\ - 23 & 27 & - 69 \\ 32 & - 13 & 58 \end{bmatrix} - 6 \begin{bmatrix} 4 & 2 & 1 \\ - 3 & 8 & - 14 \\ 7 & - 3 & 14 \end{bmatrix} + 5 \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}\]
\[ = \begin{bmatrix} 8 - 24 + 5 + 11 & 7 - 12 + 5 + 0 & 1 - 6 + 5 + 0\\ - 23 + 18 + 5 + 0 & 27 - 48 + 10 + 11 & - 69 + 84 - 15 + 0\\ 32 - 42 + 10 + 0 & - 13 + 18 - 5 + 0 & 58 - 84 + 15 + 11 \end{bmatrix} \]
\[ = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix} = O (\text{ Null matrix})\]
\[\text{ Again, }A^3 - 6 A^2 + 5A + 11 I_3 = O\]
\[ \Rightarrow A^{- 1} \times \left( A^3 - 6 A^2 + 5A + 11 I_3 \right) = A^{- 1} \times O (\text{ Pre - multiplying both sides because }A^{- 1} exists) \]
\[ \Rightarrow \left( A^2 - 6A + 5 I_3 + 11 A^{- 1} \right) = 0\]
\[ \Rightarrow \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 - 14\\ 7 & - 3 & 14 \end{bmatrix} - 6\begin{bmatrix} 1 & 1 & 1\\1 & 2 &- 3\\2 & - 1 & 3 \end{bmatrix} + 5\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = - 11 A^{- 1} \]
\[ \Rightarrow \begin{bmatrix} 4 - 6 + 5 & 2 - 6 + 0 & 1 - 6 + 0\\ - 3 - 6 + 0 & 8 - 12 + 5 & - 14 + 18 + 0\\ 7 - 12 + 0 & - 3 + 6 + 0 & 14 - 18 + 5 \end{bmatrix} = - 11 A^{- 1} \]
\[ \Rightarrow A^{- 1} = - \frac{1}{11}\begin{bmatrix} 3 & - 4 & - 5\\- 9 & 1 & 4\\ - 5 & 3 & 1 \end{bmatrix} \]
APPEARS IN
संबंधित प्रश्न
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If A is an invertible matrix of order 3, then which of the following is not true ?
(a) 3
(b) 0
(c) − 3
(d) 1
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.