हिंदी

For the Matrix a = ⎡ ⎢ ⎣ 1 1 1 1 2 − 3 2 − 1 3 ⎤ ⎥ ⎦ . Show that a − 3 − 6 a 2 + 5 a + 11 I 3 = O . Hence, Find A−1. - Mathematics

Advertisements
Advertisements

प्रश्न

For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

उत्तर

\[A = \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 &- 1& 3 \end{bmatrix} \]

\[ \Rightarrow \left| A \right| = \begin{vmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{vmatrix} = \left( 1 \times 3 \right) - \left( 1 \times 9 \right) + \left( 1 \times - 5 \right) = 3 - 9 - 5 = - 11 \]

\[\text{ Since, }\left| A \right| \neq 0\]

\[\text{Hence, }A^{- 1}\text{ exists . }\]

Now, 

\[ A^2 = \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 &- 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 + 1 + 2 & 1 + 2 - 1 & 1 - 3 + 3\\1 + 2 - 6 & 1 + 4 + 3 & 1 - 6 - 9\\2 - 1 + 6 & 2 - 2 - 3 & 2 + 3 + 9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 & - 14\\ 7 & - 3 & 14 \end{bmatrix}\]

\[\text{ and }A^3 = A^2 . A = \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 & - 14\\7 & - 3 & 14 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 + 2 + 2 & 4 + 4 - 1 & 4 - 6 + 3\\ - 3 + 8 - 28 & - 3 + 16 + 14 & - 3 - 24 - 42\\ 7 - 3 + 28 & 7 - 6 - 14 & 7 + 9 + 42 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 1\\ - 23 & 27 & - 69\\ 32 & - 13 & 58 \end{bmatrix}\]

\[\text{ Now, }A^3 - 6 A^2 + 5A + 11 I_3 = \begin{bmatrix} 8 & 7 & 1 \\ - 23 & 27 & - 69 \\ 32 & - 13 & 58 \end{bmatrix} - 6 \begin{bmatrix} 4 & 2 & 1 \\ - 3 & 8 & - 14 \\ 7 & - 3 & 14 \end{bmatrix} + 5 \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}\]

\[ = \begin{bmatrix} 8 - 24 + 5 + 11 & 7 - 12 + 5 + 0 & 1 - 6 + 5 + 0\\ - 23 + 18 + 5 + 0 & 27 - 48 + 10 + 11 & - 69 + 84 - 15 + 0\\ 32 - 42 + 10 + 0 & - 13 + 18 - 5 + 0 & 58 - 84 + 15 + 11 \end{bmatrix} \]

\[ = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix} = O (\text{ Null matrix})\]

\[\text{ Again, }A^3 - 6 A^2 + 5A + 11 I_3 = O\]

\[ \Rightarrow A^{- 1} \times \left( A^3 - 6 A^2 + 5A + 11 I_3 \right) = A^{- 1} \times O (\text{ Pre - multiplying both sides because }A^{- 1} exists) \]

\[ \Rightarrow \left( A^2 - 6A + 5 I_3 + 11 A^{- 1} \right) = 0\]

\[ \Rightarrow \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 - 14\\ 7 & - 3 & 14 \end{bmatrix} - 6\begin{bmatrix} 1 & 1 & 1\\1 & 2 &- 3\\2 & - 1 & 3 \end{bmatrix} + 5\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = - 11 A^{- 1} \]

\[ \Rightarrow \begin{bmatrix} 4 - 6 + 5 & 2 - 6 + 0 & 1 - 6 + 0\\ - 3 - 6 + 0 & 8 - 12 + 5 & - 14 + 18 + 0\\ 7 - 12 + 0 & - 3 + 6 + 0 & 14 - 18 + 5 \end{bmatrix} = - 11 A^{- 1} \]

\[ \Rightarrow A^{- 1} = - \frac{1}{11}\begin{bmatrix} 3 & - 4 & - 5\\- 9 & 1 & 4\\ - 5 & 3 & 1 \end{bmatrix} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 24 | पृष्ठ २४

संबंधित प्रश्न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Verify A (adj A) = (adj A) A = |A|I.

`[(1,-1,2),(3,0,-2),(1,0,3)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix:

\[\begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


Given  \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]

If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If A is an invertible matrix of order 3, then which of the following is not true ?


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3


If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×